Variant 1: Adult. Abdominal aortic aneurysm screening. Asymptomatic, with or without a family history of AAA or history of smoking.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Appropriateness Category</th>
<th>Relative Radiation Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>US aorta abdomen</td>
<td>Usually Appropriate</td>
<td>O</td>
</tr>
<tr>
<td>US duplex Doppler aorta abdomen</td>
<td>May Be Appropriate</td>
<td>O</td>
</tr>
<tr>
<td>CT abdomen and pelvis without IV contrast</td>
<td>May Be Appropriate (Disagreement)</td>
<td>☢☢☢</td>
</tr>
<tr>
<td>Radiography abdomen and pelvis</td>
<td>Usually Not Appropriate</td>
<td>☢☢</td>
</tr>
<tr>
<td>Aortography abdomen and pelvis</td>
<td>Usually Not Appropriate</td>
<td>☢☢☢</td>
</tr>
<tr>
<td>MRA abdomen and pelvis with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>O</td>
</tr>
<tr>
<td>MRA abdomen and pelvis without and with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>O</td>
</tr>
<tr>
<td>MRA abdomen and pelvis without IV contrast</td>
<td>Usually Not Appropriate</td>
<td>O</td>
</tr>
<tr>
<td>MRI abdomen and pelvis with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>O</td>
</tr>
<tr>
<td>MRI abdomen and pelvis without and with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>O</td>
</tr>
<tr>
<td>MRI abdomen and pelvis without IV contrast</td>
<td>Usually Not Appropriate</td>
<td>O</td>
</tr>
<tr>
<td>CT abdomen and pelvis with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢☢</td>
</tr>
<tr>
<td>CT abdomen and pelvis without and with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢☢☢</td>
</tr>
<tr>
<td>CTA abdomen and pelvis with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢☢☢</td>
</tr>
<tr>
<td>CTA abdomen and pelvis without and with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢☢☢</td>
</tr>
</tbody>
</table>
SCREENING FOR ABDOMINAL AORTIC ANEURYSM

Expert Panel on Vascular Imaging: Yoo Jin Lee, MD; Ayaz Aghayev, MD; Ezana M. Azene, MD, PhD; Salman Bhatti, MD; Joshua C. Ewell, DO; Sandeep S. Hedgire, MD; A. Tuba Kendi, MD; Esther S. H. Kim, MD, MPH; David S. Kirsch, MD; Prashant Nagpal, MD; Anil K. Pillai, MD; Beth Ripley, MD, PhD; Andrew Tannenbaum, MD; Molly E. W. Thiessen, MD; Richard Thomas, MD, MBBS; Sarah Woolsey, MD, MPH; Michael L. Steigner, MD.

Summary of Literature Review

Introduction/Background

Abdominal aortic aneurysm (AAA) is a serious condition in which the diameter of the abdominal aorta exceeds 3.0 cm, with the infrarenal aorta being the most commonly affected area. The occurrence of AAA is more common in men ≥65 years of age, with a prevalence ranging from 9.1% to 22%. In comparison, women ≥65 years of age have a lower prevalence of AAA, with rates ranging from 2% to 6.2% [1,2]. AAA can develop due to various factors such as inflammatory, proteolytic, and neovascular changes that result in the loss of elastin and accumulation of fibrous material in the arterial wall [3]. Identified risk factors for AAA include a family history of aortic aneurysm or cardiovascular disease, being male, smoking, hypertension, hypercholesterolemia, peripheral artery disease, increasing age, genetic syndromes, and inflammatory diseases [4,5]. Factors associated with expansion and rupture of AAA include large aneurysm diameter, rapid growth, smoking, hypertension, high peak wall stress, a history of cardiac or renal transplant, decreased forced expiratory volume, and being female [6,7]. AAA may enlarge over time but typically remains asymptomatic until rupture. The risk of death from an AAA rupture is estimated to be between 75% and 90%, and up to 5% of sudden deaths in the United States are caused by AAA rupture [8-10]. For individuals with asymptomatic AAA, elective surgical repair is considered the best way to prevent rupture and can be performed using an open surgical or endovascular approach. Screening or imaging surveillance is widely used to detect AAA that requires repair, with a generally accepted threshold of an aneurysm diameter exceeding 5.5 cm in men and 5.0 cm in women. Screening studies have found that AAA affects at least 4% to 8% of the population [11]. Given the high mortality and morbidity associated with AAA rupture, imaging screening continues to play a crucial role in the management of AAA.

Discussion of Procedures by Variant

Variant 1: Adult. Abdominal aortic aneurysm screening. Asymptomatic, with or without a family history of AAA or history of smoking.

Aortography Abdomen and Pelvis

There is no relevant literature to support the use of conventional angiography for screening of AAA. Aortography is invasive, time-consuming, and poses the risks of embolization, perforation, and bleeding [12]. Other noninvasive techniques to screen for AAA make this invasive option less desirable.

CT Abdomen and Pelvis With IV Contrast

As mentioned from the CT angiography (CTA) abdomen and pelvis without and with intravenous (IV) contrast section below, contrast-enhanced CT scans have not been generally accepted as a first-line screening tool for AAA [13]. Increasing number of abdominal CT scans in most hospitals results in diagnosis of many incidental AAAs. Retrospective review studies of abdominal CT scans done for a variety of reasons showed a prevalence of 2.2% to 5.8% for AAA [14,15].

*University of California San Francisco, San Francisco, California. †Panel Chair, Brigham & Women’s Hospital, Boston, Massachusetts. 2Gundersen Health System, La Crosse, Wisconsin. 3University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Society for Cardiovascular Magnetic Resonance. 4Rutgers, New Jersey Medical School, Newark, New Jersey; Committee on Emergency Radiology-GSER. 5Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. 6Mayo Clinic, Rochester, Minnesota; Commission on Nuclear Medicine and Molecular Imaging. 7Atrium Health, Sanger Heart and Vascular Institute, Charlotte, North Carolina; American Society of Echocardiography. 8Ochsner Hospital, Baton Rouge, Louisiana. 9University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin. 10UT Southwestern Medical Center, Dallas, Texas. 11VA Puget Sound Health Care System and University of Washington, Seattle, Washington. 12Mercyhealth, Rockford, Illinois. 13Denver Health Medical Center, Denver, Colorado and University of Colorado School of Medicine, Aurora, Colorado; American College of Emergency Physicians. 14Lahey Hospital and Medical Center, Burlington, Massachusetts. 15Association for Utah Community Health, Salt Lake City, Utah; American Academy of Family Physicians. 16Specialty Chair, Brigham & Women’s Hospital, Boston, Massachusetts.

The American College of Radiology seeks and encourages collaboration with other organizations on the development of the ACR Appropriateness Criteria® through representation of such organizations on expert panels. Participation on the expert panel does not necessarily imply endorsement of the final document by individual contributors or their respective organization.

Reprint requests to: publications@acr.org
CT Abdomen and Pelvis Without and With IV Contrast
Again, as mentioned from the CTA abdomen and pelvis without and with IV contrast section below, contrast-enhanced CT scans have not been generally accepted as a first-line screening tool for AAA [13].

CT Abdomen and Pelvis Without IV Contrast
Noncontrast CT can be considered as a screening examination for AAA, which can be especially beneficial in the setting of obesity or poor sonographic window. One study reported that noncontrast CT was superior to ultrasound (US) concerning sensitivity ranging from 83% to 89% depending on the measured plane when compared to US with 57% to 70%, although specificity was high for both studies measuring 98% and 99%, respectively [13]. With modern CT imaging technology, noncontrast CT has been proposed as an alternative screening method to offer more reliable examinations with additional information, including aortic wall calcifications, as well as thoracic and iliac arterial abnormality [13]. When compared to CTA, a study reported that the low-dose noncontrast CT exhibited similar accuracy and reproducibility of measurements in AAA [16].

CTA Abdomen and Pelvis With IV Contrast
Contrast-enhanced CT scans are known to be more precise when compared to US, with near 100% sensitivity and specificity, and are more reliable than US at determining size and extent and demonstrating adjacent structures, and are not degraded by bowel gas or obesity. Although contrast-enhanced CTA is an effective diagnostic tool, it has not been generally accepted as a screening tool due to its use of IV contrast [12,13].

CTA imaging of AAA is now well-established and is a popular imaging choice for diagnostic and presurgical/intervention study and sometimes surveillance of AAA, with particular strength in demonstrating the size, extent, and other characteristics of an aneurysm and associated aortic branch disease.

The difference between US and CTA measurements of AAA were reported, with general accusation that US underestimates AAA diameter and that CT demonstrates a closer reflection of the actual diameter, with parallel debate over the ideal measuring method without complete consensus [17,18]. Recent updates from the 2018 The Society for Vascular Surgery guidelines for the care of AAA patient now recommends using the outer wall to outer wall for measurement of the maximum aneurysm diameter [6], moving away from the inner wall to inner wall measurements.

CTA Abdomen and Pelvis Without and With IV Contrast
Noncontrast CT scans were not commonly used as a primary screening tool for AAA in the past, but recent studies have explored their potential as an alternative method [13,19]. One such study of 533 patients reported a higher sensitivity (83%-89% versus 57%-70%) with high specificity over 98% when compared to US [12]. The added benefit of the noncontrast CT when performed in addition to the CTA is that it allows for a more accurate detection of aneurysm calcification and thoracic and iliac lesions compared to US.

MRA Abdomen and Pelvis With IV Contrast
Similar to the CT, MR angiography (MRA) is also highly accurate in detecting AAA and shows excellent reproducibility in between MRI examinations but has not been accepted as a screening tool [13]. MRA can serve as an alternative tool for CT or US. MRA has the potential to provide further information on AAA beyond its morphology, for example, AAA wall strain and stiffness, which may contribute to better understanding of AAA pathophysiology, biomechanics, and risk for rupture [20].

MRA Abdomen and Pelvis Without and With IV Contrast
There is insufficient evidence to support noncontrast MRA as a screening examination for AAA. However, a prospective study of nonenhanced MRA compared with contrast-enhanced CTA demonstrated equivalent accuracy of measurements in preoperative planning for endovascular aortic repair (EVAR) of AAA [21]. Noncontrast MRA sequences such as 3-D noncontrast black-blood cardiovascular MR technique has been studied with compressed sensing to decrease its long scan time [22].

MRA Abdomen and Pelvis Without IV Contrast
There is insufficient evidence to support the use of a noncontrast MRA as a screening examination for AAA.

MRI Abdomen and Pelvis With IV Contrast
There is insufficient evidence to support the use of MRI that lacks MRA sequences as a screening examination for AAA.
MRI Abdomen and Pelvis Without and With IV Contrast
There is insufficient evidence to support the addition of a noncontrast MRI as a screening examination for AAA.

MRI Abdomen and Pelvis Without IV Contrast
There is insufficient evidence to support a noncontrast MRI as a screening examination for AAA.

Radiography Abdomen and Pelvis
There is no relevant literature to support the use of abdomen and pelvis radiograph for routine screening of AAA, although calcified aneurysmal walls may be visualized by abdomen and pelvis radiograph.

US Aorta Abdomen
US is the most widely used screening and surveillance imaging method for the evaluation of AAA, which is implemented in screening programs in several countries [13,23-26]. The U.S. Preventive Services Task Force recommends one-time screening for AAA with US in men 65 to 75 years of age, who have ever smoked, with reported screening rates ranging 13% to 26% [27-29]. US is safe, portable, easy to operate, and proven beneficial for screening of AAA, with sensitivity and specificity close to 100% and a high accuracy comparable to CT, MRI, or MRA [13]. However, US was reported to show significant interobserver variability [13,30,31] and does not fully reflect other aneurysm characteristics such as intraluminal thrombus, plaque ulceration, or surrounding inflammation, which CT shows strength in [32]. Recent studies on specifying local wall strain information attempt to further stratify the risk of rupture using noninvasive imaging such as real-time 3-D US speckle tracking imaging [33,34].

US examination can measure the dimensions of the suprarenal, juxtarenal, pararenal, and infrarenal aorta. Imaging of the iliac arteries should also be included given close correlation. In 1% to 2% of cases, the aorta cannot be well evaluated due to bowel gas or anatomical challenges regarding aortic depth [32,35].

US Duplex Doppler Aorta Abdomen
Color Doppler US imaging is not currently a required component of sonographic screening or surveillance examination; however, it can be used as a screening imaging method. A study focusing on the variability in protocols and interobserver variabilities through literature review propose a harmonized US size acquisition and reading guidelines including reporting of the mean of 3 plane measurements [17]. Several studies use 3-D US technology for detection of AAA, including rupture risk prediction models, but there are currently insufficient data to build consensus [36-39].

Summary of Recommendations

- **Variant 1**: US of the aorta abdomen is usually appropriate for AAA screening in an adult patient who is asymptomatic with or without a family history of AAA or history of smoking. The panel did not agree on recommending CT abdomen and pelvis without IV contrast for this clinical scenario. There is insufficient medical literature to conclude whether or not these patients would benefit from this procedure in this scenario. Screening with this procedure in this patient population is controversial but may be appropriate.

Supporting Documents
The evidence table, literature search, and appendix for this topic are available at https://acsearch.acr.org/list. The appendix includes the strength of evidence assessment and the final rating round tabulations for each recommendation.

For additional information on the Appropriateness Criteria methodology and other supporting documents go to www.acr.org/ac.
Appropriateness Category Names and Definitions

<table>
<thead>
<tr>
<th>Appropriateness Category Name</th>
<th>Appropriateness Rating</th>
<th>Appropriateness Category Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usually Appropriate</td>
<td>7, 8, or 9</td>
<td>The imaging procedure or treatment is indicated in the specified clinical scenarios at a favorable risk-benefit ratio for patients.</td>
</tr>
<tr>
<td>May Be Appropriate</td>
<td>4, 5, or 6</td>
<td>The imaging procedure or treatment may be indicated in the specified clinical scenarios as an alternative to imaging procedures or treatments with a more favorable risk-benefit ratio, or the risk-benefit ratio for patients is equivocal.</td>
</tr>
<tr>
<td>May Be Appropriate (Disagreement)</td>
<td>5</td>
<td>The individual ratings are too dispersed from the panel median. The different label provides transparency regarding the panel’s recommendation. “May be appropriate” is the rating category and a rating of 5 is assigned.</td>
</tr>
<tr>
<td>Usually Not Appropriate</td>
<td>1, 2, or 3</td>
<td>The imaging procedure or treatment is unlikely to be indicated in the specified clinical scenarios, or the risk-benefit ratio for patients is likely to be unfavorable.</td>
</tr>
</tbody>
</table>

Relative Radiation Level Information

Potential adverse health effects associated with radiation exposure are an important factor to consider when selecting the appropriate imaging procedure. Because there is a wide range of radiation exposures associated with different diagnostic procedures, a relative radiation level (RRL) indication has been included for each imaging examination. The RRLs are based on effective dose, which is a radiation dose quantity that is used to estimate population total radiation risk associated with an imaging procedure. Patients in the pediatric age group are at inherently higher risk from exposure, because of both organ sensitivity and longer life expectancy (relevant to the long latency that appears to accompany radiation exposure). For these reasons, the RRL dose estimate ranges for pediatric examinations are lower as compared with those specified for adults (see Table below). Additional information regarding radiation dose assessment for imaging examinations can be found in the ACR Appropriateness Criteria® Radiation Dose Assessment Introduction document [40].

<table>
<thead>
<tr>
<th>Relative Radiation Level*</th>
<th>Adult Effective Dose Estimate Range</th>
<th>Pediatric Effective Dose Estimate Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>0 mSv</td>
<td>0 mSv</td>
</tr>
<tr>
<td>☢</td>
<td><0.1 mSv</td>
<td><0.03 mSv</td>
</tr>
<tr>
<td>☢☢</td>
<td>0.1-1 mSv</td>
<td>0.03-0.3 mSv</td>
</tr>
<tr>
<td>☢☢☢</td>
<td>1-10 mSv</td>
<td>0.3-3 mSv</td>
</tr>
<tr>
<td>☢☢☢☢</td>
<td>10-30 mSv</td>
<td>3-10 mSv</td>
</tr>
<tr>
<td>☢☢☢☢☢</td>
<td>30-100 mSv</td>
<td>10-30 mSv</td>
</tr>
</tbody>
</table>

*RRL assignments for some of the examinations cannot be made, because the actual patient doses in these procedures vary as a function of a number of factors (eg, region of the body exposed to ionizing radiation, the imaging guidance that is used). The RRLs for these examinations are designated as “Varies.”

References

