Clinical Condition: Vomiting in Infants Up to 3 Months of Age

Variant 1: Bilious vomiting in neonate up to 1 week old.

<table>
<thead>
<tr>
<th>Radiologic Procedure</th>
<th>Rating</th>
<th>Comments</th>
<th>RRL*</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray abdomen</td>
<td>9</td>
<td>An initial radiograph will help determine further workup strategy.</td>
<td>☢☢</td>
</tr>
<tr>
<td>X-ray upper GI series</td>
<td>8</td>
<td>Consider this procedure when abdominal radiograph suggests distal bowel obstruction.</td>
<td>☢☢☢️</td>
</tr>
<tr>
<td>X-ray contrast enema</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US abdomen (UGI tract)</td>
<td>4</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

Rating Scale: 1,2,3 Usually not appropriate; 4,5,6 May be appropriate; 7,8,9 Usually appropriate

Variant 2: Bilious vomiting in infant 1 week to 3 months old.

<table>
<thead>
<tr>
<th>Radiologic Procedure</th>
<th>Rating</th>
<th>Comments</th>
<th>RRL*</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray upper GI series</td>
<td>9</td>
<td></td>
<td>☢☢☢️</td>
</tr>
<tr>
<td>X-ray abdomen</td>
<td>5</td>
<td></td>
<td>☢☢</td>
</tr>
<tr>
<td>US abdomen (UGI tract)</td>
<td>3</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Tc-99m sulfur colloid reflux scintigraphy</td>
<td>1</td>
<td>This procedure may seldom provide useful information about gastric emptying and GER.</td>
<td>☢☢☢️</td>
</tr>
</tbody>
</table>

Rating Scale: 1,2,3 Usually not appropriate; 4,5,6 May be appropriate; 7,8,9 Usually appropriate

Variant 3: Intermittent nonbilious vomiting since birth.

<table>
<thead>
<tr>
<th>Radiologic Procedure</th>
<th>Rating</th>
<th>Comments</th>
<th>RRL*</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray upper GI series</td>
<td>6</td>
<td></td>
<td>☢☢☢️</td>
</tr>
<tr>
<td>US abdomen (UGI tract)</td>
<td>4</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Tc-99m sulfur colloid reflux scintigraphy</td>
<td>3</td>
<td>This procedure may seldom provide useful information about gastric emptying and GER.</td>
<td>☢☢☢️</td>
</tr>
<tr>
<td>X-ray abdomen</td>
<td>1</td>
<td></td>
<td>☢☢</td>
</tr>
</tbody>
</table>

Rating Scale: 1,2,3 Usually not appropriate; 4,5,6 May be appropriate; 7,8,9 Usually appropriate

ACR Appropriateness Criteria® 1 Vomiting in Infants
Clinical Condition: Vomiting in Infants Up to 3 Months of Age
Variant 4: New onset nonbilious vomiting.

<table>
<thead>
<tr>
<th>Radiologic Procedure</th>
<th>Rating</th>
<th>Comments</th>
<th>RRL*</th>
</tr>
</thead>
<tbody>
<tr>
<td>US abdomen (UGI tract)</td>
<td>9</td>
<td>In this procedure, particular attention should be paid to gastric pylorus.</td>
<td>O</td>
</tr>
<tr>
<td>X-ray upper GI series</td>
<td>6</td>
<td>This procedure is the first choice if technician has limited experience with US of the pylorus and if clinical presentation is atypical for hypertrophic pyloric stenosis.</td>
<td>☢☢☢</td>
</tr>
<tr>
<td>X-ray abdomen</td>
<td>2</td>
<td></td>
<td>☢☢</td>
</tr>
<tr>
<td>Tc-99m sulfur colloid reflux scintigraphy</td>
<td>1</td>
<td></td>
<td>☢☢☢</td>
</tr>
</tbody>
</table>

Rating Scale: 1,2,3 Usually not appropriate; 4,5,6 May be appropriate; 7,8,9 Usually appropriate

Relative Radiation Level
VOMITING IN INFANTS UP TO 3 MONTHS OF AGE

Expert Panel on Pediatric Imaging: Molly E. Raske, MD1; Molly E. Dempsey, MD2; Jonathan R. Dillman, MD3; Christopher E. Dory, MD4; Matthew Garber, MD5; Laura L. Hayes, MD6; Ramesh S. Iyer, MD7; Abhaya V. Kulkarni, MD8; John S. Myseros, MD9; Henry E. Rice, MD10; Cynthia K. Rigby, MD11; Maura E. Ryan, MD12; Peter J. Strouse, MD13; Sjirk J. Westra, MD14; Sandra L. Wootton-Gorges, MD15; Brian D. Coley, MD16; Boaz Karmazyn, MD17

Summary of Literature Review

Introduction/Background

Vomiting, or the forceful extrusion of gastric contents, is never normal in the infant and usually occurs because of complete or partial obstruction somewhere along the course of the gastrointestinal (GI) tract between the stomach and cecum [1]. Clinically, vomiting is categorized as being nonbilious or bilious; the latter suggests the point of obstruction is distal to the ampulla of Vater. Most commonly, nonbilious “vomiting” is actually regurgitation (gastroesophageal reflux [GER]). The clinical differentiation between vomiting and regurgitation may be challenging.

Regurgitation, or GER, is normal in the first 3 months of life and resolves in time. It usually has no definitive pathologic cause and is unrelated to a functional defect. Rarely, regurgitation may be due to displacement of a portion of the stomach into the chest (i.e., hiatal hernia). In other cases, low esophageal sphincter pressures or delays in gastric emptying have been implicated as causative and typically resolve in time [1].

Parental complaints of vomiting or regurgitation in infants during the first 3 months of life are common. The cause is usually GER, particularly in the first weeks of life and with overfeeding. Infants with normal weight gain tend not to have disease as the cause of their vomiting [2]. However, bilious emesis or repeated forceful vomiting should be evaluated for underlying pathologies. When evaluating a neonate who presents in the first week of life with vomiting, a congenital GI tract abnormality is a primary consideration. Upper or lower tract abnormalities can cause vomiting with the possible etiologies including malrotation with or without volvulus, atresia of the antropyloric region, atresia/stenosis of the small bowel or colon, functional obstructions caused by Hirschsprung disease, functional immaturity of the colon, and meconium ileus. Importantly, although malrotation most commonly presents in newborns, it can present at any time during life with decreasing frequency with age.

Several GI pathologies to consider in a vomiting infant outside of the newborn time period include hypertrophic pyloric stenosis (HPS), pylorospasm, formula intolerance, and gastroenteritis. In a young infant, less common GI etiologies include neonatal appendicitis, intussusception, gastric ulcer disease, gastric volvulus, and lactobezoar. Medical causes to consider include sepsis, enteritis, pneumonia, otitis media, meningitis, raised intracranial pressure (from tumor, trauma, or hydrocephalus), kernicterus, metabolic disorders (phenylketonuria, hyperammonemia, maple syrup urine disease, galactosemia, diabetes, adrenal cortical hyperplasia, methylmalonic acidemia), diencephalic syndrome, and rarely drugs or toxic agents [2–4].

Diagnostic workup should start with a thorough clinical evaluation. History and physical examination can lead to the diagnosis in many instances. Viral gastroenteritis often appears in epidemics, with sudden onset of vomiting, mild fever, diarrhea, and a relatively short duration. Systemic infections and metabolic disorders may be diagnosed by clinical and laboratory criteria. HPS may be diagnosed by feeling the classic “olive” of hypertrophied muscle. Intussusception, which is unusual in the first 3 months of life, may be diagnosed clinically...
by crampy abdominal pain sometimes progressing to bloody stools. Patients with increased intracranial pressure often have neurologic signs [2,4].

When the clinical and laboratory assessment provides a definitive diagnosis and treatment plan, radiologic imaging is not required. Clinical diagnostic uncertainty requires use of imaging.

The imaging workup of vomiting patients in the newborn to 3-month-old age group is discussed with regard to 3 different clinical scenarios:

1. Bilious vomiting
2. Intermittent nonbilious vomiting since birth
3. New-onset nonbilious vomiting

Discussion of the Imaging Modalities by Variant

Variants 1 and 2: Bilious Vomiting

Regurgitation of the first few feedings of life is not uncommon. These infants must, however, be watched closely and examined frequently. The quality of regurgitated material gives clues as to the location of possible obstruction [5]. Bilious vomiting is usually due to sepsis or obstruction [2]. It requires urgent diagnosis and treatment because midgut volvulus about the superior mesenteric artery (SMA) may lead to ischemia and necrosis of the small bowel distal to the point of volvulus. In a study of 45 patients with bilious vomiting in the first 72 hours of life, 20% had midgut volvulus and 11% had a lower GI cause (meconium plug syndrome or left-sided microcolon) [5]. Abdominal radiograph can help in choosing the most appropriate fluoroscopy. One must be wary to differentiate true bilious vomiting from inconsequential regurgitation of yellow colostrum or vomitus with meconium, which is more indicative of distal bowel obstruction.

Evaluation for Malrotation and Midgut Volvulus

Abdominal Radiographs

Abdominal radiographs have a role in determining subsequent imaging workup, keeping in mind that normal abdominal radiographs do not exclude the diagnosis of malrotation. In a group studied by Lilien et al [5], only 44% of patients who required surgery for bilious vomiting had definitively positive radiograph readings. If the radiographs do show signs of obstruction, the pattern of bowel distension helps to define whether the obstruction is proximal or distal, directing further evaluation with an upper GI (UGI) series or contrast enema, respectively.

Contrast Upper Gastrointestinal Series

To answer the key imaging question in such patients—that is, whether the child has a mechanical obstruction—requires direct imaging of the stomach and small bowel. The barium UGI series evaluates the esophagus, stomach, pylorus, and the duodenum to the duodenal jejunal junction, indicating the location of the ligament of Treitz [4-6]. Although the UGI series is considered the gold standard for evaluating malrotation, false-positive and false-negative interpretations may occur. In a retrospective review of 229 cases by Sizemore et al [7], UGI had a sensitivity of 96% with 2 false-positives (abnormal jejunal position with no malrotation) and 7 false-negatives (normal jejunal position with malrotation). Retrospective reviews by Hsiao et al [8] and another such study by Long et al [9] noted false-positive rates of 10% and 15% respectively. The studies concluded that redundant duodenum, bowel distension, and jejunal position can lead to inaccurate UGI interpretation, thus meticulous technique is warranted [7-9].

Ultrasound

There is overall limited evidence of the accuracy of ultrasound (US) as the primary imaging modality in evaluating malrotation and midgut volvulus. There are 2 anatomical landmarks that can be evaluated by US that may indicate malrotation: position of the superior mesenteric vein (SMV) in relation to the SMA and the position of the third part of the duodenum behind the SMA [10,11]. A normal SMV/SMA relationship does not preclude malrotation, with both false-positive (21%) and false-negative (2%-3%) results reported [12]. Obscuration of the SMA and SMV by bowel gas has been reported to occur in up to 17% of cases [13]. In a small prospective series, US demonstrated abnormal position of the duodenum in 50% of children who had surgery for malrotation [14]. In addition, malrotation represents a spectrum of abnormal bowel fixation that may include a situation where the duodenum courses behind the SMA [15].

It is important to recognize sonographic features of midgut volvulus as they can help to substantiate the diagnosis in an equivocal UGI study or when US is performed for other indications (eg, evaluation for HPS). US findings in
midgut volvulus include duodenal dilation with tapering, fixed midline bowel, whirlpool sign, and dilation of the distal SMV [16-18].

X-ray Contrast Enema
Abnormalities of the lower GI tract that cause bilious vomiting may be demonstrated by barium enema [3,19]. The use of barium enema for analyzing malrotation is less direct than analysis by UGI series. Approximately 20% of barium enemas may be falsely negative, whereas up to 15% of infants have a high mobile cecum that may cause false-positive interpretations of the study [7].

Nuclear Medicine
Nuclear medicine studies, which can be highly effective in analyzing gastric emptying and GER, have no significant role in the evaluation of the neonate with acute bilious vomiting.

Variant 3: Intermittent Nonbilious Vomiting Since Birth
There are several common causes of intermittent vomiting since birth. In a review of 145 such cases by O’Keeffe et al [20], 43 were due to idiopathic GER, 40 to HPS, 27 to overfeeding, 15 to pylorospasm, 14 to milk allergy, and 1 to gastroenteritis. Other diagnostic possibilities include gastric volvulus and, rarely, gastric ulcers [10,16-18].

The most common cause for intermittent vomiting or regurgitation since birth is GER. The brief passage of gastric contents into the esophagus (GER) is a normal physiologic process that occurs in healthy infants and children. Gastroesophageal reflux disease (GERD) occurs when GER causes complications such as poor weight gain or esophagitis. Competence of the lower esophageal sphincter is based on anatomic and physiologic factors that are not completely understood. The sphincter mechanism is not fully mature for at least the first 6 weeks of life. This explains the decrease incidence of GER after infancy. There is no consensus on the optimal workup of GER and the significance of a “positive” test [11].

Evaluation for Gastroesophageal Reflux
Most children with GER who are otherwise healthy do not need any diagnostic workup. In children that have symptoms referable to suspected GER, a diagnostic workup may be undertaken. The current gold standard evaluation is the extended pH probe. UGI series and/or reflux scintigraphy have limited roles in diagnosis of GER and its complications. However, although the UGI is insensitive in detecting reflux, it has an important role to exclude anatomic abnormalities as the cause of the patient’s vomiting/regurgitation.

Radiographs
Radiographs do not play a role in the diagnosis of GER.

Contrast Upper Gastrointestinal Series
Clinical practice guidelines on GER from 2001 [21] stated that the sensitivity, specificity, and positive predictive values of UGI series range from 31% to 86%, 21% to 83%, and 80% to 82%, respectively, when compared to esophageal pH monitoring. The recent clinical practice guidelines from the North American and European Societies for Pediatric Gastroenterology, Hepatology, and Nutrition state that the UGI is not useful for diagnosing GER but can help exclude or confirm anatomic abnormalities that cause symptoms similar to GER [22]. The brief duration of the UGI series results in false-negative results, whereas the frequent occurrence of nonpathological reflux results in false-positive results. Thus, the UGI series is not a useful test to reliably determine the presence or absence of GER. In patients with severe and/or complicated GERD who will be managed with gastrostomy tube placement and Nissen fundoplication or with gastrojejunostomy tube, the UGI is useful to exclude anatomic abnormalities such as esophageal stricture or malrotation that would need to be addressed at the time of surgery.

Reflux Scintigraphy
Reflux scintigraphy with 99m technetium (Tc-99m)-labeled sulfur colloid mixed in a feeding was noted by Seibert et al [23] to be 79% sensitive when compared to a 24-hour pH esophageal probe as a standard. Nuclear medicine scintigraphy can be used over a prolonged time without increasing radiation exposure and at a lesser radiation dose than the UGI series. Methodology and interpretation criteria are not uniform from center to center [24,25]. Several studies have tried to standardize the methodology of the examination. A 1-hour scintigraphic study formatted in 60-second frames provides a quantitative representation of postprandial GER for children, particularly if they do not have rapid gastric emptying [26]. False-negative examinations can be associated with delayed gastric emptying, and in this patient group prolongation of the study beyond 60 minutes or confirmatory pH probe evaluation may be advisable. Othman [27] proposes that placing the patient in multiple positions during
the scan results in a percentage yield of a positive study that is three-fold that of the conventional supine position technique.

In a series of symptomatic and asymptomatic preterm infants who had reached 32–34 weeks postconceptional age, radionuclide scintigraphy demonstrated a high incidence of reflux in both groups that did not correlate with symptoms [28]. Use of this study thus may be limited to patients older than 3 months of age in which other modalities have excluded an anatomic cause for feeding disorders. [23,29,30].

Ultrasound
There is limited experience with the use of US for diagnosis of reflux, and inconsistent results are reported with sensitivity ranging from 38% to 100% [31-35]. US diagnosis of reflux is made by noting water placed into the stomach refluxing into the distal esophagus (after tube removal). However, there is no standardization of the study and the amount of water and duration of observation varies.

Evaluation for Delayed Gastric Emptying and Pylorospasm
UGI series, as well as US and scintigraphy, can show gastric emptying that, when delayed, may indicate pylorospasm as a cause of persistent vomiting. The UGI series is helpful in diagnosing HPS, hiatal hernia, GER, and duodenal abnormalities that result in delayed gastric emptying [36].

Delayed images in standard positions allow scintigraphy to assess gastric transit without additional radiation exposure [24,31]. Delayed gastric emptying has been defined as more than 50% retained labeled liquid within the stomach after 120 minutes in children younger than 2 years of age.

There is limited information about US imaging of pylorospasm and delayed gastric emptying. Postprandial evacuation of the stomach in infants has been described using functional US by monitoring antral areas [37]. US allows evaluation of normal and abnormal pyloric lengths and muscle wall thicknesses [32]. Antropyloric muscle wall thickness measurements are normally 1–2 mm [20]. In patients with pylorospasm the muscle thickness can occasionally be in the range of 2 mm to <3 mm. Some of these patients may evolve to pyloric stenosis [20,34]. One study showed that compared to patients with pyloric stenosis, in pylorospasm the muscle thickness and length vary during the study. In 18 of 31 patients with pylorospasm a transient pyloric muscle wall thickness >4 mm was measured, and 6 patients had pyloric length of >18 mm, simulating HPS for at least a portion of their US study. Changeability of these measurements and evident gastric emptying of inserted fluid helped confirm the US diagnosis of pylorospasm.

Other Conditions
Gastric ulcers are now typically diagnosed by endoscopy.

Chronic gastric volvulus is another rare consideration. In the neonatal and infant group, its primary presentation is recurrent vomiting. Though radiographs show no characteristic finding, the UGI series may show a high curvature, a greater curvature crossing the esophagus, a downward-pointing pylorus, 2 air fluid levels, or a lowering of the gastric fundus, all of which are suggestive of gastric torsion [12]. Gastric volvulus should be considered in infants presenting with sudden episodes of cyanosis and apnea, anorexia, or pneumonia in association with recurrent vomiting [16].

Variant 4: New Onset Nonbilious Vomiting
The most common conditions to produce acute nonbilious vomiting during infancy are GER, viral gastroenteritis, pylorospasm, and HPS.

HPS is typically suggested by forceful bile-free emesis in a previously healthy infant around 6 weeks of age [33]. Forceful vomiting may be reported in patients with GER, particularly in overfed patients.

When a classic “olive” of hypertrophied pyloric muscle is palpated, the diagnosis of HPS can be made clinically, and the patient can be sent to surgery for a pyloromyotony without the need for imaging examinations [33]. Recent advances in laparoscopic surgery suggest that accurate measurements of pyloric muscle thickening are useful in the planning of surgery, even when the diagnosis is clinically evident [35]. When no “olive” is palpated, imaging by US or an UGI series can be performed for diagnosis.
Radiographs
Abdominal radiography may show gastric distension with HPS. On occasion, mass impression of the thickened pyloric muscle on an air-filled gastric antrum may be noted. However, radiographs are most often not helpful in HPS diagnosis and are usually nonspecific in cases of GER or gastroenteritis.

Upper Gastrointestinal Series
Though the contrast UGI series is excellent for diagnosing obstructive causes of vomiting in this age group it has the limitation of using ionizing radiation and therefore is less ideal than US as an initial screening test if HPS is a strong consideration.

When doing an UGI in cases of HPS one can note the mass impression of the hypertrophied pyloric muscle on the barium-filled antrum (“shoulder sign”) or the filling of the proximal pylorus (“beak sign”) or the entire elongated pylorus (“string sign”) with barium [3]. The UGI series allows diagnosis of GER as well as less common causes of obstruction such as midgut volvulus, gastric volvulus, or annular pancreas [2]. Because of the delayed gastric emptying present in cases of HPS the demonstration of the beak and string signs can be difficult to identify, often requiring considerable fluoroscopic time with a resultant increase in radiation exposure.

Ultrasonography
US has become a standard and highly accurate method for diagnosing HPS without the need for radiation exposure. It allows real-time imaging of the pyloric muscle and channel. The diagnosis of HPS is based on imaging of a constant elongated, thick-walled pylorus with no passage of gastric content. The diagnosis is supported by measurements of pyloric channel length and muscle thickness [18,20,29,33,38]. Muscle thickness of ≥4 mm with an a length of >18 mm are considered positive for HPS, but measurements between 3 and 4 mm may also be positive, particularly in the premature or younger neonate [39]. Muscle thickness measurement may be obtained on transverse or longitudinal views of the pylorus [33].

In few patients there is overlap of these measurements, most notably between patients with pylorospasm and patients with evolving HPS. Diagnostic caution with careful clinical follow-up has been suggested for the diagnosis of pylorospasm to avoid the possibility of underdiagnosing cases evolving into HPS [40]. Pylorospasm is said to be the most common cause of gastric outlet obstruction in this age group and, unlike HPS, it is treated conservatively [18].

Nuclear Scintigraphy
Nuclear scintigraphy has little place in the evaluation of the 6-week-old infant with projectile vomiting. If all other causes of vomiting have been excluded, it may be useful for functional evaluation of gastric emptying, although such patients are typically older than 3 months of age by the time scintigraphy is requested.

Ultrasound Versus Upper GI for HPS
US has the advantage over UGI series in that it does not use ionizing radiation. However, a negative US does not exclude other pathologies, and some patients will need further evaluation with and UGI study, which can lead to increased imaging expense. Foley et al [41], in reviewing the cost, risk, and benefit of first using US in the analysis of the vomiting child in 2 pediatric hospitals, found a 33% reduction in the number of UGI series performed but a 95% increase in overall cost because the remaining patients went on to a UGI series. Forman et al [42] found an increased cost among their patients because only 44% had HPS and the others went on to a UGI series.

Cost analyses that support UGI as the initial imaging study in patients suspected of having HPS may not be generalizable because the percentage of infants with projectile vomiting who have a US examination and then go on to a UGI series varies greatly with the clinical and US practice of a given institution [43].

US is the first study of choice when there is a strong clinical suspicion of HPS. UGI series is an appropriate first study in infants with an atypical presentation for HPS or when the exam will be performed at a center with limited experience with US evaluation of the pylorus.

Summary of Recommendations
- In imaging a child with bilious vomiting with possible malrotation, a UGI series should be the examination of choice.
- In children with bilious vomiting, if an abdominal radiograph suggests a distal obstruction, then a water-soluble contrast enema should be considered.
- The imaging evaluation of intermittent vomiting in infants depends on the clinical scenario, and imaging is not always necessary. UGI is the preferred imaging when anatomy evaluation is indicated. Radionuclide scans can also play a role in assessing the severity of GER and gastric emptying.
- In imaging an infant younger than 3 months with projectile nonbilious vomiting, US should be the first imaging consideration for diagnosis of HPS. UGI should be considered if the technician has limited experience with US and when clinical presentation is atypical for HPS.

Summary of Evidence

Of the 43 references cited in the *ACR Appropriateness Criteria® Vomiting in Infants up to 3 Months of Age* document, all of them are categorized as diagnostic references including 1 well-designed study, 4 good quality studies, and 14 quality studies that may have design limitations. There are 24 references that may not be useful as primary evidence.

The 43 references cited in the ACR Appropriateness Criteria® *ACR Appropriateness Criteria® Vomiting in Infants up to 3 Months of Age* document were published between 1981–2013.

While there are references that report on studies with design limitations, 5 well-designed or good quality studies provide good evidence.

Relative Radiation Level Information

Potential adverse health effects associated with radiation exposure are an important factor to consider when selecting the appropriate imaging procedure. Because there is a wide range of radiation exposures associated with different diagnostic procedures, a relative radiation level (RRL) indication has been included for each imaging examination. The RRLs are based on effective dose, which is a radiation dose quantity that is used to estimate population total radiation risk associated with an imaging procedure. Patients in the pediatric age group are at inherently higher risk from exposure, both because of organ sensitivity and longer life expectancy (relevant to the long latency that appears to accompany radiation exposure). For these reasons, the RRL dose estimate ranges for pediatric examinations are lower as compared to those specified for adults (see Table below). Additional information regarding radiation dose assessment for imaging examinations can be found in the ACR Appropriateness Criteria® *Radiation Dose Assessment Introduction* document.

<table>
<thead>
<tr>
<th>Relative Radiation Level*</th>
<th>Adult Effective Dose Estimate Range</th>
<th>Pediatric Effective Dose Estimate Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>0 mSv</td>
<td>0 mSv</td>
</tr>
<tr>
<td>☒☒</td>
<td><0.1 mSv</td>
<td><0.03 mSv</td>
</tr>
<tr>
<td>☒☒☒</td>
<td>0.1-1 mSv</td>
<td>0.03-0.3 mSv</td>
</tr>
<tr>
<td>☒☒☒☒</td>
<td>1-10 mSv</td>
<td>0.3-3 mSv</td>
</tr>
<tr>
<td>☒☒☒☒☒</td>
<td>10-30 mSv</td>
<td>3-10 mSv</td>
</tr>
<tr>
<td>☒☒☒☒☒☒</td>
<td>30-100 mSv</td>
<td>10-30 mSv</td>
</tr>
</tbody>
</table>

*RRL assignments for some of the examinations cannot be made, because the actual patient doses in these procedures vary as a function of a number of factors (eg, region of the body exposed to ionizing radiation, the imaging guidance that is used). The RRLs for these examinations are designated as “Varies”.

Supporting Documents

For additional information on the Appropriateness Criteria methodology and other supporting documents go to www.acr.org/ac.
References

The ACR Committee on Appropriateness Criteria and its expert panels have developed criteria for determining appropriate imaging examinations for diagnosis and treatment of specified medical condition(s). These criteria are intended to guide radiologists, radiation oncologists and referring physicians in making decisions regarding radiologic imaging and treatment. Generally, the complexity and severity of a patient’s clinical condition should dictate the selection of appropriate imaging procedures or treatments. Only those examinations generally used for evaluation of the patient’s condition are ranked. Other imaging studies necessary to evaluate other co-existent diseases or other medical consequences of this condition are not considered in this document. The availability of equipment or personnel may influence the selection of appropriate imaging procedures or treatments. Imaging techniques classified as investigational by the FDA have not been considered in developing these criteria; however, study of new equipment and applications should be encouraged. The ultimate decision regarding the appropriateness of any specific radiologic examination or treatment must be made by the referring physician and radiologist in light of all the circumstances presented in an individual examination.