Variant 1:
Recurrent lower urinary tract infections in a female. Uncomplicated with no underlying risk factors.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Appropriateness Category</th>
<th>Relative Radiation Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>US kidneys and bladder retroperitoneal</td>
<td>Usually Not Appropriate</td>
<td>☀</td>
</tr>
<tr>
<td>Fluoroscopy voiding cystourethrography</td>
<td>Usually Not Appropriate</td>
<td>☢ ☢</td>
</tr>
<tr>
<td>Radiography abdomen</td>
<td>Usually Not Appropriate</td>
<td>☢ ☢</td>
</tr>
<tr>
<td>Fluoroscopy contrast enema</td>
<td>Usually Not Appropriate</td>
<td>☢ ☢ ☢</td>
</tr>
<tr>
<td>Fluoroscopy cystography</td>
<td>Usually Not Appropriate</td>
<td>☢ ☢ ☢ ☢</td>
</tr>
<tr>
<td>Radiography intravenous urography</td>
<td>Usually Not Appropriate</td>
<td>☢ ☢ ☢ ☢</td>
</tr>
<tr>
<td>MRI abdomen and pelvis without and with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☀</td>
</tr>
<tr>
<td>MRI abdomen and pelvis without IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☀</td>
</tr>
<tr>
<td>MRU without and with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☀</td>
</tr>
<tr>
<td>CT abdomen and pelvis with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢ ☢ ☢ ☢ ☢</td>
</tr>
<tr>
<td>CT abdomen and pelvis without IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢ ☢ ☢ ☢ ☢</td>
</tr>
<tr>
<td>CT abdomen and pelvis without and with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢ ☢ ☢ ☢ ☢ ☢</td>
</tr>
<tr>
<td>CT pelvis with bladder contrast (CT cystography)</td>
<td>Usually Not Appropriate</td>
<td>☢ ☢ ☢ ☢ ☢ ☢</td>
</tr>
<tr>
<td>CTU without and with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢ ☢ ☢ ☢ ☢ ☢</td>
</tr>
</tbody>
</table>
Recurrent lower urinary tract infections in a female. Complicated, or patients who are nonresponders to conventional therapy, develop frequent reinfections or relapses, or have known underlying risk factors.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Appropriateness Category</th>
<th>Relative Radiation Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRU without and with IV contrast</td>
<td>Usually Appropriate</td>
<td>O</td>
</tr>
<tr>
<td>CTU without and with IV contrast</td>
<td>Usually Appropriate</td>
<td>☢☢☢☢</td>
</tr>
<tr>
<td>US kidneys and bladder retroperitoneal</td>
<td>May Be Appropriate</td>
<td>O</td>
</tr>
<tr>
<td>Fluoroscopy voiding cystourethrography</td>
<td>May Be Appropriate</td>
<td>☢☢</td>
</tr>
<tr>
<td>Fluoroscopy cystography</td>
<td>May Be Appropriate</td>
<td>☢☢</td>
</tr>
<tr>
<td>MRI abdomen and pelvis without and with IV contrast</td>
<td>May Be Appropriate</td>
<td>O</td>
</tr>
<tr>
<td>MRI abdomen and pelvis without IV contrast</td>
<td>May Be Appropriate</td>
<td>O</td>
</tr>
<tr>
<td>CT abdomen and pelvis with IV contrast</td>
<td>May Be Appropriate</td>
<td>☢☢</td>
</tr>
<tr>
<td>CT abdomen and pelvis without IV contrast</td>
<td>May Be Appropriate</td>
<td>☢☢☢</td>
</tr>
<tr>
<td>CT abdomen and pelvis without and with IV contrast</td>
<td>May Be Appropriate</td>
<td>☢☢☢☢</td>
</tr>
<tr>
<td>CT pelvis with bladder contrast (CT cystography)</td>
<td>May Be Appropriate</td>
<td>☢☢☢☢</td>
</tr>
<tr>
<td>Fluoroscopy urethrogramy double balloon</td>
<td>Usually Not Appropriate</td>
<td>☢☢</td>
</tr>
<tr>
<td>Radiography abdomen</td>
<td>Usually Not Appropriate</td>
<td>☢☢</td>
</tr>
<tr>
<td>Fluoroscopy contrast enema</td>
<td>Usually Not Appropriate</td>
<td>☢☢☢</td>
</tr>
<tr>
<td>Radiography intravenous urography</td>
<td>Usually Not Appropriate</td>
<td>☢☢☢</td>
</tr>
</tbody>
</table>
RECURRENT LOWER URINARY TRACT INFECTIONS IN FEMALES

Expert Panel on Urological Imaging: Aradhana M. Venkatesan, MDa; Aytekin Oto, MD;b Brian C. Allen, MD;c Oguz Akin, MD;d Lauren F. Alexander, MD;d Jaron Chong, MD;d Adam T. Froemming, MD;d Pat F. Fulgham, MD;d Stanley Goldfarb, MD; Lori Mankowski Gettle, MD, MBA; Jodi K. Maranchie, MD; Bhavik N. Patel, MD, MBA; Nicola Schieda, MD;m David M. Schuster, MD:n Ismail B. Turkbey, MD; Mark E. Lockhart, MD, MPH.p

Summary of Literature Review

Introduction/Background

A urinary tract infection (UTI) is an infection of the urinary system causing an inflammatory response. A UTI occurs when the normal flora of the periurethral area are replaced by uropathogenic bacteria, which ascend, causing bacterial cystitis. Less commonly, this infection ascends to the kidney to cause bacterial pyelonephritis [1]. The overall lifetime risk of UTI for women is >50% [2].

An uncomplicated UTI is classified as a UTI without structural or functional abnormalities of the urinary tract and without relevant comorbidities. It should be noted that although uncomplicated UTI includes both lower tract infection (cystitis) and upper tract infection (pyelonephritis), repeated pyelonephritis should prompt consideration of a complicated etiology [1]. Complicated UTIs are those occurring in patients with underlying structural or medical problems [3,4]. Anatomical abnormalities include cystoceles, bladder or urethral diverticula, fistulae, indwelling catheters, urinary tract obstruction and underlying conditions such as voiding dysfunction, pregnancy, diabetes, and immunosuppression. Other documented risk factors include prior urinary tract surgery or trauma, gross hematuria after infection resolution, urea-splitting bacteria on culture, prior abdominopelvic malignancy, prior urinary tract calculi, prior diverticulitis, symptoms of pneumaturia, fecaluria, or repeated pyelonephritis.

In the nonobstructed, nonpregnant woman, uncomplicated UTI is usually treated empirically and responds to appropriate antimicrobial therapy [2,5]. A UTI is considered recurrent when it follows the complete clinical resolution of a previous UTI [6]. Recurrent lower UTIs are usually defined as at least three episodes of infection within the preceding 12 months [3]. Recurrent UTIs involve reinfection from a source outside of the urinary tract or from bacterial persistence [1-3]. In most cases, such infections are the result of sexual habits and hygiene (eg, women who are sexually active, especially those using diaphragms and/or spermatocides) [3,7]. Although antibiotic prophylaxis effectively limits UTI recurrence, it increases the risk of antibiotic resistance for both the causative microorganisms and the indigenous flora and risks adverse effects. It therefore should be approached judiciously.

Before considering antibiotic prophylaxis for recurrent UTIs, self-care measures should be advised, including ensuring adequate hydration to promote more frequent urination, encouraging urge-initiated voiding and post-coital voiding, the avoidance of spermicidal-containing contraceptives, and, for postmenopausal women with risk factors such as atrophic vaginitis, the prescription of topical vaginal estrogens, as appropriate [8,9]. A clean-catch or catheterized specimen for culture typically reveals >100,000 organisms per milliliter of urine. E. coli is the most common organism in all patient groups, causing approximately 75% of recurrent UTIs, with most other infections caused by E. faecalis, Proteus mirabilis, Klebsiella, or S. saprophyticus particularly in patients with risk factors for complicated UTIs [6,10-12]. Postmenopausal women are at increased risk for recurrent UTI in the presence of urinary incontinence, cystocele, or high postvoid residuals of urine [13,14].

Women who have three or more symptomatic infections over a 12-month period may benefit from prophylaxis [3,4,7]. Imaging is of low yield in patients without underlying risk factors, less than two episodes per year on average, and who respond promptly to appropriate therapy (see Appendix 1) [1,7,15,16]. Current clinical guidelines indicate that imaging should not be routinely obtained in the index patient presenting with recurrent UTIs because
of the low yield of anatomic abnormalities [17]. Recurrent and chronic infections with the same organism are termed “relapses” or “persistent” infections. If infection develops more than 2 weeks after a symptomatic cure, or if it is caused by a second pathogen, it is termed a “reinfection” [7]. Conversely, those patients with bacterial cystitis who recur rapidly (eg, within 2 weeks of initial treatment) after symptom resolution or who display bacterial persistence without symptom resolution may be reclassified as complicated and may require imaging [17]). Causes of bacterial persistence include calculi, foreign bodies, urethral or bladder diverticula, infected urachal cyst, and postoperative changes such as a remaining urethral stump that retains urine and results in stasis. In such patients, imaging is indicated to detect a treatable condition and monitor its progress. As described in the ACR Appropriateness Criteria® topic on “Acute Pyelonephritis” [18], there can be difficulty in differentiating a lower UTI from one with renal parenchymal involvement. In such situations, imaging studies are used for diagnosis and treatment planning.

Special Imaging Considerations

CTU
CT urography (CTU) is an imaging study that is tailored to improve visualization of both the upper and lower urinary tracts. There is variability in the specific parameters, but it usually involves unenhanced images followed by intravenous (IV) contrast-enhanced images, including nephrographic and excretory phases acquired at least 5 minutes after contrast injection. Alternatively, a split-bolus technique uses an initial loading dose of IV contrast and then obtains a combined nephrographic-excretory phase after a second IV contrast dose; some sites include arterial phase. CTU should use thin-slice acquisition. Reconstruction methods commonly include maximum intensity projection or 3-D volume rendering. For the purposes of this document, we make a distinction between CTU and CT abdomen and pelvis without and with IV contrast. CT abdomen and pelvis without and with IV contrast is defined as any protocol not specifically tailored for evaluation of the upper and lower urinary tracts and without both the precontrast and excretory phases, as is the case for CTU.

CT Pelvis with Bladder Contrast (CT Cystography)
CT cystography is an imaging study that is tailored to visualize traumatic bladder lesions. This technique involves retrograde drip infusion of diluted iodinated contrast into the urinary bladder followed by pelvic CT imaging at maximal bladder distension. IV contrast may be administered, particularly if evaluating for underlying neoplastic or inflammatory processes [19]. For the purposes of this document, we distinguish CT cystography from CT abdomen and pelvis without and with IV contrast. CT abdomen and pelvis without and with IV contrast is also defined as any protocol not specifically tailored for evaluation of the integrity of the urinary bladder wall and without retrograde instillation of contrast into the urinary bladder, as is the case for CT cystography.

MRU
MR urography (MRU) is also tailored to improve imaging of the urinary system. Unenhanced MRU relies upon heavily T2-weighted imaging of the intrinsic high signal intensity from urine for evaluation of the urinary tract. IV contrast is administered to provide additional information regarding obstruction, urothelial thickening, focal lesions, and stones. A contrast-enhanced T1-weighted series should include corticomedullary, nephrographic, and excretory phase. Thin-slice acquisition and multiplanar imaging should be obtained. For the purposes of this document, we make a distinction between MRU and MRI abdomen and pelvis without and with IV contrast. MRI abdomen and pelvis without and with IV contrast is defined as any protocol not specifically tailored for evaluation of the upper and lower urinary tracts, without both the precontrast and excretory phases and without heavily T2-weighted images of the urinary tract, as is the case for MRU.

US Abdomen with IV Contrast
Prior studies show promise regarding the potential role of contrast-enhanced ultrasound (US) for the initial diagnosis and follow-up of patients with complicated acute pyelonephritis [20-22]. Using CT as a reference standard, Mitterberger et al [22] demonstrated a sensitivity of 98% and a specificity of 100% for contrast-enhanced US in the diagnosis of acute pyelonephritis in 100 patients. Its use in current mainstream practice remains limited, however, with only recent FDA approval for abdominal imaging applications.
Discussion of Procedures by Variant

Variant 1: Recurrent lower urinary tract infections in a female. Uncomplicated with no underlying risk factors.

In women with recurrent uncomplicated UTIs, cystoscopy and imaging are not routinely used [1]. Lawrentschuk et al [23] showed that women with no risk factors for UTI had a negative predictive value of 93% for normal cystoscopy. Prior series have demonstrated a low yield of nonincidental findings in those patients with a low pretest probability of complicated UTI [1,24].

CT Abdomen and Pelvis

There are no specific guidelines recommending imaging studies in women who have recurrent UTIs but no known underlying medical or anatomic conditions [6,25]. As such, CT is not generally performed for evaluation of uncomplicated UTI.

CT Pelvis with Bladder Contrast (CT Cystography)

There are no specific guidelines recommending imaging studies in women who have recurrent UTIs but no known underlying medical or anatomic conditions [6,20]. As such, CT cystography is not generally performed for evaluation of uncomplicated UTI.

CTU

There are no specific guidelines recommending imaging studies in women who have recurrent UTIs but no known underlying medical or anatomic conditions [6,20]. As such, CTU is not generally performed for evaluation of uncomplicated UTI.

Fluoroscopy Contrast Enema

Although fluoroscopic contrast enema may be useful in the setting of suspected vesicoenteric fistula, it is not used for imaging in women with recurrent uncomplicated UTIs in the absence of risk factors.

Fluoroscopy Cystography

A prior prospective study of findings with excretory urography, cystography, and cystoscopy in women with symptomatic UTI revealed only rare instances of abnormalities important in the treatment of UTI in this group of patients, primarily urethral diverticula [26]. Most women with recurrent uncomplicated UTIs in the absence of risk factors have normal urinary tracts and do not routinely require imaging with fluoroscopic cystography.

Fluoroscopy Voiding Cystourethrography

As most women with recurrent uncomplicated UTIs in the absence of risk factors have normal urinary tracts, they do not routinely require imaging with voiding cystourethrography. A prior prospective study including findings of excretory urography in women with symptomatic UTI revealed only rare instances of structural abnormalities important in the treatment of UTI in this group of patients [26].

MRI Abdomen and Pelvis

CT and MRU have supplanted the use of IV urography (IVU) at most institutions for most types of urinary applications [27]. However, most women with recurrent uncomplicated UTIs in the absence of risk factors have normal urinary tracts and do not routinely require imaging with MRI.

MRI Kidneys and Bladder Retroperitoneal

As most women with recurrent symptomatic UTI have normal urinary tracts, they do not routinely require imaging with radiography of the kidneys.

Radiography Abdomen

As most women with recurrent symptomatic UTI have normal urinary tracts, they do not routinely require imaging with radiography of the abdomen.

Radiography Intravenous Urography

Historically, intravenous urography (IVU) was the imaging study of choice to evaluate the urinary tract, but it is no longer used at most institutions [13]. IVU is not used for evaluation of uncomplicated UTI.

US Kidneys and Bladder Retroperitoneal

As most women with recurrent symptomatic UTI have normal urinary tracts, they do not routinely require imaging with US of the kidneys, bladder, and retroperitoneum.
Variant 2: Recurrent lower urinary tract infections in a female. Complicated, or patients who are nonresponders to conventional therapy, develop frequent reinfections or relapses, or have known underlying risk factors. Complicated causes of UTI can be evaluated by history and physical examination. In women suspected of having a recurrent complicated UTI, cystoscopy and imaging should be considered [24].

CT Abdomen and Pelvis
Historically, unenhanced CT has been used predominantly for the emergency patient with renal colic and/or hematuria. It has also been used to define the severity and extent of upper tract calculi, which are occasionally associated with recurrent complicated UTIs. The lack of additional contrast-enhanced CT imaging and the lack of dedicated imaging of the collecting systems, kidneys, and bladder limits further evaluation of underlying anatomical or pathophysiologic processes.

Contrast-enhanced CT has been used effectively to evaluate a range of urinary tract abnormalities, including renal masses, genitourinary trauma, and specific aspects of renal infection, including the presence of pyelonephritis, renal abscesses, and obstruction. However, a contrast-enhanced CT of the abdomen and pelvis remains a study that is not tailored for evaluation of the urothelium and therefore does not optimally evaluate the collecting systems, ureters, and bladder. Moreover, lacking an unenhanced CT component, a contrast-enhanced CT of the abdomen and pelvis can limit the detection of calculi and the characterization of enhancement within masses [24]. The addition of rectal contrast or oral contrast with delayed scanning of an enhanced CT of the abdomen and pelvis is useful to detect enterovesical fistulas and infected fistulous tracts [28].

CT Pelvis with Bladder Contrast (CT Cystography)
CT cystography has supplanted fluoroscopic cystogram for the evaluation of traumatic bladder injuries, including intraperitoneal, extraperitoneal, or combined rupture and bladder contusions [29]. It is also useful for diagnosing bladder fistulas and leaks, particularly colovesical fistulas occurring as a result of sigmoid diverticular disease, which can remain undiagnosed despite evaluation with cystoscopy and contrast-enhanced CT [19].

CTU
CTU is a primary test for the evaluation of recurrent complicated UTIs. It includes unenhanced, nephrographic phase, and excretory phase images, with the latter providing a detailed anatomic depiction of the major portions of the urinary tract including the kidneys, intrarenal collecting systems, ureters, and bladder [30]. Diuretic administration prior to the excretory phase can augment both urinary tract distention and opacification [30]. CTU has excellent sensitivity and specificity for the identification of renal and urothelial lesions [31]. This allows patients with hematuria to be evaluated comprehensively and can identify abnormalities of the collecting systems [27]. It is also useful for detecting or excluding congenital anomalies or obstruction of the urinary tract in patients with complicated recurrent UTIs. Given the low yield of CTU screening for asymptomatic hematuria in patients <30 years of age, or without risk factors for urinary tract malignancy, US or noncontrast CT may be the first-line imaging examinations in these patients. When there are risk factors present for urinary tract malignancy and the patient is >50 years of age, CTU is the preferred examination [31].

Fluoroscopy Contrast Enema
Contrast enema is generally not useful for women with recurrent complicated UTIs. Although it may be utilized for imaging of vesicoenteric fistulas, CT is the primary imaging modality for suspected cases of enterovesical fistulas and has been found to have a higher rate of detection and also capable of identifying the underlying etiology [32,33]. If an enema is performed, water-soluble contrast should be selected rather than barium.

Fluoroscopy Cystography
Fluoroscopic cystography is generally not useful for women with recurrent complicated UTIs. Although it can delineate bladder diverticuli and vesicoenteric fistulas, CT has supplanted fluoroscopic cystography at most institutions.

Fluoroscopy Urethrography Double Balloon
Double-balloon urethrography can be useful for demonstration of urethral diverticula, although MRI best assesses the structure and complexity of urethral diverticula, allowing for accurate diagnosis and improved surgical planning. MRI to evaluate for urethral diverticulum has replaced double-balloon urethrography at most institutions. Double-balloon urethrography can be technically difficult and may be uncomfortable for the patient. For this document, it is assumed the procedure is performed and interpreted by an expert.
Fluoroscopy Voiding Cystourethrography
When a bladder diverticulum is at or near a ureteral orifice, voiding cystourethrography can be considered to evaluate the possibility of vesicoureteral reflux [34]. It can also be employed for imaging of suspected bladder or urethral fistula, urethral diverticulum, or bladder prolapse.

MRI Abdomen and Pelvis
Both MRI of the abdomen and pelvis and MRU can be used to evaluate the urinary tract and have the advantage to provide more functional information than CT. MRI has been shown to be useful in the diagnosis and follow-up of UTI and acute pyelonephritis [27,35,36]. MRI is effective at diagnosing pelvic-organ prolapse. The resultant cystoceles and urinary incontinence associated with pelvic-organ prolapse are significant risk factors for recurrent UTIs in postmenopausal women [13,37,38].

MRI is the optimum imaging modality for assessment of the structure and complexity of urethral diverticula, allowing for accurate diagnosis and improved surgical planning [39]. Given the excellent soft-tissue contrast on MRI, this modality is equally sensitive to CT for evaluating vesicovaginal and enterovesicular fistulae [40,41]. In at least one study, MRI altered the surgical management in 15% of patients [39].

A history of recurrent UTI is seen in 30% to 50% of patients with urethral diverticula. Diverticula of the urethra can be evaluated with high sensitivity and specificity by double-balloon urethrography, voiding CT urethrography, and MRI [42-44]. MRI best assesses the structure and complexity of urethral diverticula, allowing for accurate diagnosis and improved surgical planning. Patients with suspected bladder diverticula may be imaged with cystography, US, or CT [45]. Bladder diverticula are unusual in women and are associated with a neurogenic or postoperative bladder; they are rarely congenital. MRI has also been shown to be accurate in the diagnosis of colovesical fistula. The multiplanar imaging capability and high soft-tissue resolution inherent to MRI also makes this modality suitable for imaging suspected fistulae, particularly when repeat imaging is an issue [40,41]. IVU, US, and upper gastrointestinal or small-bowel follow-through have very low yields for fistula [46,47].

MRU
MRU is useful to evaluate suspected urinary tract obstruction, hematuria, and congenital anomalies, as well as postoperative anatomy. The most common MRU techniques for displaying the urinary tract can be divided into two categories: static-fluid MRU and excretory MRU. Static-fluid MRU makes use of heavily T2-weighted sequences to image the urinary tract as a static collection of fluid, can be repeated sequentially (cine MRU) to better demonstrate the ureters in their entirety and to confirm the presence of fixed stenoses, and is most successful in patients with dilated or obstructed collecting systems. Excretory MRU is performed during the excretory phase of enhancement after the IV administration of gadolinium-based contrast material. Diuretic administration is integral to excretory MRU to better demonstrate nondilated systems. Static-fluid and excretory MRU can be combined with conventional MRI for comprehensive evaluation of the urinary tract [48]. MRU can be used to evaluate the urinary tract and provides more functional information than CT provides. However, MRU is less established and less reliable and thus results in lesser diagnostic image quality relative to CTU [23]. In comparison to CTU, it necessitates a longer examination time and is less sensitive than CT for detecting urinary tract calculi. In a study of 149 patients, MRU demonstrated 69% sensitivity for detecting calculi versus 100% for CT [49]. However, MRU has shown increased sensitivity for perirenal fluid and ureteric dilatation in comparison with CT in the setting of acute obstruction [50]. Multiplanar reconstruction images in the coronal and sagittal planes are commonly included in MRU images to improve visualization of urinary tract abnormalities [27,48]. Additional benefits for MRU are in documenting active upper-tract infection versus scar formation to determine whether therapy has been effective in the high-risk patient.

Radiography Abdomen
Radiography of the abdomen has long been employed for the detection of calculi, intramural bladder wall calcification, gas in the wall or lumen of the urinary bladder, and/or foreign bodies that may be the etiology of a UTI. Use of digital tomosynthesis of the abdomen results in improved detection of urinary stones in general over digital radiography [51]. Bladder-wall calcification, when present, is typically due to prior infection with Schistosoma (uncommon in the United States, but very common in other parts of the world), tuberculosis, Cytoxan cystitis, or radiation cystitis [52]. For women with recurrent UTIs, however, abdominal radiography is generally not a useful diagnostic tool as other imaging modalities have higher sensitivity and specificity in this setting.
Radiography Intravenous Urography
CT and MRU have supplanted the use of IVU for evaluation of urinary abnormalities at most institutions [27], and it is generally not useful for women with recurrent complicated UTIs.

US Kidneys and Bladder Retroperitoneal
US may be useful in women with recurrent UTIs, particularly prior to pregnancy, to evaluate for hydronephrosis and risk factors for recurrent infection. Hydronephrosis can be demonstrated as an indication of obstruction, although US may not yield a specific etiology [53-55]. US is a useful initial screening tool for obstructive uropathy and for postvoid residual volume determination to detect incomplete bladder emptying [56]. It should be noted, although US can detect renal stones, it is generally less sensitive than CT [57-59]. Renal abscess or perinephric collections can also be detected sonographically, and US of the bladder can be employed to evaluate for bladder diverticula detection [45].

Summary of Recommendations
- **Variant 1**: Imaging is usually not appropriate for recurrent uncomplicated lower UTIs in a female with no known underlying risk factors.
- **Variant 2**: In a female suspected of having a recurrent complicated UTI, cystoscopy and imaging should be considered. CTU or MRU are usually appropriate for the evaluation of recurrent complicated lower UTIs or for a female who are nonresponders to conventional therapy, develop frequent reinfections or relapses, or have known underlying risk factors. CTU and MRU are considered equivalent alternatives (ie, only one procedure will be ordered to provide the clinical information to effectively manage the patient’s care).

Supporting Documents
The evidence table, literature search, and appendix for this topic are available at https://acsearch.acr.org/list. The appendix includes the strength of evidence assessment and the final rating round tabulations for each recommendation.

For additional information on the Appropriateness Criteria methodology and other supporting documents go to www.acr.org/ac.

Appropriateness Category Names and Definitions

<table>
<thead>
<tr>
<th>Appropriateness Category Name</th>
<th>Appropriateness Rating</th>
<th>Appropriateness Category Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usually Appropriate</td>
<td>7, 8, or 9</td>
<td>The imaging procedure or treatment is indicated in the specified clinical scenarios at a favorable risk-benefit ratio for patients.</td>
</tr>
<tr>
<td>May Be Appropriate</td>
<td>4, 5, or 6</td>
<td>The imaging procedure or treatment may be indicated in the specified clinical scenarios as an alternative to imaging procedures or treatments with a more favorable risk-benefit ratio, or the risk-benefit ratio for patients is equivocal.</td>
</tr>
<tr>
<td>May Be Appropriate (Disagreement)</td>
<td>5</td>
<td>The individual ratings are too dispersed from the panel median. The different label provides transparency regarding the panel’s recommendation. “May be appropriate” is the rating category and a rating of 5 is assigned.</td>
</tr>
<tr>
<td>Usually Not Appropriate</td>
<td>1, 2, or 3</td>
<td>The imaging procedure or treatment is unlikely to be indicated in the specified clinical scenarios, or the risk-benefit ratio for patients is likely to be unfavorable.</td>
</tr>
</tbody>
</table>

Relative Radiation Level Information
Potential adverse health effects associated with radiation exposure are an important factor to consider when selecting the appropriate imaging procedure. Because there is a wide range of radiation exposures associated with
different diagnostic procedures, a relative radiation level (RRL) indication has been included for each imaging examination. The RRLs are based on effective dose, which is a radiation dose quantity that is used to estimate population total radiation risk associated with an imaging procedure. Patients in the pediatric age group are at inherently higher risk from exposure, because of both organ sensitivity and longer life expectancy (relevant to the long latency that appears to accompany radiation exposure). For these reasons, the RRL dose estimate ranges for pediatric examinations are lower as compared with those specified for adults (see Table below). Additional information regarding radiation dose assessment for imaging examinations can be found in the ACR Appropriateness Criteria® Radiation Dose Assessment Introduction document [60].

<table>
<thead>
<tr>
<th>Relative Radiation Level*</th>
<th>Adult Effective Dose Estimate Range</th>
<th>Pediatric Effective Dose Estimate Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 mSv</td>
<td>0 mSv</td>
</tr>
<tr>
<td>☢</td>
<td><0.1 mSv</td>
<td><0.03 mSv</td>
</tr>
<tr>
<td>☢☢</td>
<td>0.1-1 mSv</td>
<td>0.03-0.3 mSv</td>
</tr>
<tr>
<td>☢☢☢</td>
<td>1-10 mSv</td>
<td>0.3-3 mSv</td>
</tr>
<tr>
<td>☢☢☢☢</td>
<td>10-30 mSv</td>
<td>3-10 mSv</td>
</tr>
<tr>
<td>☢☢☢☢☢</td>
<td>30-100 mSv</td>
<td>10-30 mSv</td>
</tr>
</tbody>
</table>

*RRL assignments for some of the examinations cannot be made, because the actual patient doses in these procedures vary as a function of a number of factors (eg, region of the body exposed to ionizing radiation, the imaging guidance that is used). The RRLs for these examinations are designated as “Varies.”

References
42. Chang YL, Lin AT, Chen KK. Presentation of female urethral diverticulum is usually not typical. Urol Int 2008;80:41-5.
Appendix 1. Risk Factors

<table>
<thead>
<tr>
<th>Risk Factors, Signs, and Symptoms</th>
<th>Underlying Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Flank Pain</td>
<td>Obstruction and/or calculi</td>
</tr>
<tr>
<td>2. Infection with urea-splitting organism</td>
<td>Congenital abnormalities, sequelae of obstruction or infection, calculi (struvite)</td>
</tr>
<tr>
<td>3. Previous UTI or pyelonephritis</td>
<td>Congenital abnormalities and/or reflux</td>
</tr>
<tr>
<td>4. Fever (>38.5° C)</td>
<td>Infection and/or obstruction</td>
</tr>
<tr>
<td>5. History of calculi or obstruction</td>
<td>Congenital abnormalities, calculi, sequelae of obstruction or infection</td>
</tr>
<tr>
<td>6. Obstructive symptoms</td>
<td>Congenital abnormalities, calculi, sequelae of obstruction or infection</td>
</tr>
<tr>
<td>7. Elevated serum creatinine</td>
<td>Obstructive versus renal parenchymal disease</td>
</tr>
<tr>
<td>8. Asymptomatic bacteriuria</td>
<td>Calculi or foreign body</td>
</tr>
<tr>
<td>9. Severe diabetes mellitus</td>
<td>Renal/papillary abnormalities</td>
</tr>
<tr>
<td>10. Childhood UTI</td>
<td>Congenital abnormalities and/or reflux</td>
</tr>
<tr>
<td>11. Analgesic abuse</td>
<td>Renal/papillary abnormalities</td>
</tr>
<tr>
<td>12. Neurogenic bladder dysfunction</td>
<td>Stasis, bladder diverticula, reflux, calculi</td>
</tr>
<tr>
<td>13. History of genitourinary surgery</td>
<td>Congenital and/or postsurgical abnormalities</td>
</tr>
<tr>
<td>14. Suspected bladder diverticula</td>
<td>Bladder diverticula</td>
</tr>
<tr>
<td>15. Suspected urethral diverticula</td>
<td>Urethral diverticula</td>
</tr>
<tr>
<td>16. Suspected enterovesical fistula</td>
<td>Enterovesical fistula</td>
</tr>
<tr>
<td>17. Urinary incontinence</td>
<td>Infection, stasis</td>
</tr>
<tr>
<td>18. Pelvic floor dysfunction</td>
<td>Cystocele, stasis</td>
</tr>
<tr>
<td>19. Postvoid residuals</td>
<td>Stasis</td>
</tr>
</tbody>
</table>