**Variant 1:** Adult or child older than 5 years of age. Acute trauma to the foot. Ottawa rules can be evaluated without exclusionary criteria. Ottawa rules are negative. No suspected abnormalities in regions not evaluated by the Ottawa rules. Initial imaging.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Appropriateness Category</th>
<th>Relative Radiation Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiography foot</td>
<td>Usually Not Appropriate</td>
<td>☢</td>
</tr>
<tr>
<td>CT foot without IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢☢</td>
</tr>
<tr>
<td>CT foot with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢☢</td>
</tr>
<tr>
<td>CT foot without and with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢☢</td>
</tr>
<tr>
<td>MRI foot without IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢</td>
</tr>
<tr>
<td>MRI foot without and with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢</td>
</tr>
<tr>
<td>US foot</td>
<td>Usually Not Appropriate</td>
<td>☢</td>
</tr>
</tbody>
</table>

**Variant 2:** Adult or child older than 5 years of age. Acute trauma to the foot. Ottawa rules can be evaluated without exclusionary criteria. Ottawa rules are positive. Initial imaging.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Appropriateness Category</th>
<th>Relative Radiation Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiography foot</td>
<td>Usually Appropriate</td>
<td>☢</td>
</tr>
<tr>
<td>Radiography foot with weightbearing</td>
<td>Usually Appropriate</td>
<td>☢</td>
</tr>
<tr>
<td>CT foot with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢☢</td>
</tr>
<tr>
<td>CT foot without and with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢☢</td>
</tr>
<tr>
<td>CT foot without IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢</td>
</tr>
<tr>
<td>MRI foot without and with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢</td>
</tr>
<tr>
<td>MRI foot without IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢</td>
</tr>
<tr>
<td>US foot</td>
<td>Usually Not Appropriate</td>
<td>☢</td>
</tr>
</tbody>
</table>

**Variant 3:** Adult or child older than 5 years of age. Acute trauma to the foot. Ottawa rules cannot be evaluated due to exclusionary criteria. Initial imaging.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Appropriateness Category</th>
<th>Relative Radiation Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiography foot</td>
<td>Usually Appropriate</td>
<td>☢</td>
</tr>
<tr>
<td>CT foot without IV contrast</td>
<td>May Be Appropriate</td>
<td>☢☢</td>
</tr>
<tr>
<td>CT foot with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢</td>
</tr>
<tr>
<td>CT foot without and with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢</td>
</tr>
<tr>
<td>MRI foot without and with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢</td>
</tr>
<tr>
<td>MRI foot without IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢</td>
</tr>
<tr>
<td>US foot</td>
<td>Usually Not Appropriate</td>
<td>☢</td>
</tr>
</tbody>
</table>
**Variant 4:** Adult or child older than 5 years of age. Acute trauma to the foot. Ottawa rules can be evaluated without exclusionary criteria. Ottawa rules are negative. Suspected pathology in an anatomic area not addressed by Ottawa rules (not involving the midfoot; e.g., metatarsalphalangeal joint, metatarsal, toe, tendon, etc). Initial imaging.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Appropriateness Category</th>
<th>Relative Radiation Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiography foot</td>
<td>Usually Appropriate</td>
<td>☢</td>
</tr>
<tr>
<td>Radiography foot with weightbearing</td>
<td>Usually Appropriate</td>
<td>☢</td>
</tr>
<tr>
<td>CT foot without IV contrast</td>
<td>May Be Appropriate (Disagreement)</td>
<td>☢☢</td>
</tr>
<tr>
<td>CT foot with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢☢</td>
</tr>
<tr>
<td>CT foot without and with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢☢</td>
</tr>
<tr>
<td>Fluoroscopy foot</td>
<td>Usually Not Appropriate</td>
<td>☢</td>
</tr>
<tr>
<td>MRI foot without and with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢</td>
</tr>
<tr>
<td>MRI foot without IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢</td>
</tr>
<tr>
<td>US foot</td>
<td>Usually Not Appropriate</td>
<td>☢</td>
</tr>
</tbody>
</table>

**Variant 5:** Adult or child older than 5 years of age. Acute trauma to the foot. Suspect Lisfranc injury, tendon injury, or occult fracture or dislocation. Radiographs are normal or equivocal. Next imaging study.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Appropriateness Category</th>
<th>Relative Radiation Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT foot without IV contrast</td>
<td>Usually Appropriate</td>
<td>☢☢</td>
</tr>
<tr>
<td>MRI foot without IV contrast</td>
<td>Usually Appropriate</td>
<td>☢</td>
</tr>
<tr>
<td>US foot</td>
<td>May Be Appropriate</td>
<td>☢</td>
</tr>
<tr>
<td>CT foot with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢☢</td>
</tr>
<tr>
<td>CT foot without and with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢☢</td>
</tr>
<tr>
<td>MRI foot without and with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢</td>
</tr>
</tbody>
</table>

**Variant 6:** Adult or child older than 5 years of age. Acute trauma to the foot. Suspect penetrating trauma with a foreign body. Radiographs of the foot are negative. Next imaging study.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Appropriateness Category</th>
<th>Relative Radiation Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>US foot</td>
<td>Usually Appropriate</td>
<td>☢</td>
</tr>
<tr>
<td>CT foot without IV contrast</td>
<td>May Be Appropriate</td>
<td>☢☢</td>
</tr>
<tr>
<td>MRI foot without IV contrast</td>
<td>May Be Appropriate</td>
<td>☢</td>
</tr>
<tr>
<td>CT foot with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢☢</td>
</tr>
<tr>
<td>CT foot without and with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢☢</td>
</tr>
<tr>
<td>MRI foot without and with IV contrast</td>
<td>Usually Not Appropriate</td>
<td>☢</td>
</tr>
</tbody>
</table>
ACUTE TRAUMA TO THE FOOT

Expert Panel on Musculoskeletal Imaging: Tetyana Gorbachova, MD; Eric Y. Chang, MD; Alice S. Ha, MD, MS; Behrang Amini, MD, PhD; Scott R. Dorfman, MD; Michael G. Fox, MD, MBA; Bharti Khurana, MD; Alan Klitzke, MD; Kenneth S. Lee, MD, MBA; Pekka A. Mooar, MD; Kaushal H. Shah, MD; Nehal A. Shah, MD; Adam D. Singer, MD; Stacy E. Smith, MD; Mihra S. Taljanovic, MD, PhD; Jonelle M. Thomas, MD, MPH; Mark J. Kransdorf, MD.

Summary of Literature Review

Introduction/Background

Acute injuries to the foot are frequently encountered in the setting of the emergency room and in general practice. The clinical indications for imaging (known as the Ottawa rules) have been developed to minimize unnecessary radiographs, and their utility is well documented by multiple studies. The most commonly accepted form of these rules is the following:

A series of foot radiographs is required only if there is pain in the midfoot and any one of the following: 1) point bone tenderness of the navicular; 2) point bone tenderness of the base of the fifth metatarsal; or 3) inability to bear weight or to walk 4 steps (immediately after the injury or at the emergency department).

A meta-analysis (10 studies encompassing 3,725 patients) of the Ottawa rules for the foot showed that these rules have a sensitivity of 99% and a median specificity of 26% for combined evaluation of the ankle and midfoot [1]. The Ottawa rules for the ankle and midfoot have been shown to be effective for the pediatric population (>5 years of age) [2]. Including the added criterion of swelling yields a sensitivity and specificity for fracture of 100% and 55% for the malleolar zone and 50% and 40% for the midfoot, respectively [3,4].

Exclusionary Criteria

Multiple conditions or scenarios preclude the use of the Ottawa rules for determining if imaging is necessary [5,6]. It has been reported that the Ottawa rules for the foot should not be used or should be used with great caution in the following clinical situations: penetrating trauma, pregnancy, any skin wound, transferred with radiographs already taken, >10 days after trauma, a return visit for continued traumatic foot pain, in the setting of polytrauma, altered sensorium, neurologic abnormality affecting the foot, or underlying bone disease [7].

Other clinical scenarios of foot trauma not directly addressed by the Ottawa rules include trauma to the metatarsal heads and toes and penetrating trauma with concern for a foreign body in the soft tissues. Also, there is little in the literature on medical decision making of when to order a radiographic study of the toes [8].

Discussion of Procedures by Variant

Variant 1: Adult or child older than 5 years of age. Acute trauma to the foot. Ottawa rules can be evaluated without exclusionary criteria. Ottawa rules are negative. No suspected abnormalities in regions not evaluated by the Ottawa rules. Initial imaging.

When assessing acute trauma to the foot, it is very important to determine that there are no exclusionary criteria for evaluation by Ottawa rules, in which case the rules cannot be applied; see Variant 3. In addition, there are clinical scenarios that are not specifically assessed by the Ottawa rules because the rules mainly address injuries to the midfoot. Such scenarios, for example, include injuries to the forefoot; see Variant 4.
**Radiography Foot**

The Ottawa rules were designed to minimize unnecessary radiographs for patients with acute ankle and foot injuries [6]. The Ottawa rules for acute trauma to the foot are fairly well established and have been validated by multiple institutional trials verifying the 99% sensitivity in determining the presence of a foot fracture [1,9,10]. The more serious potential problems in determining the need for imaging occurs in the patient who does not meet the inclusion criteria for imaging by the Ottawa rules of the foot. These inclusionary criteria are stated in the Introduction/Background section [5,6]; added criterion of swelling increases sensitivity and specificity [3,4]. One should carefully evaluate the patient to make sure they do not meet any of the exclusionary criteria before implementing the Ottawa rules. Radiographs may be appropriate in certain clinical scenarios when Ottawa rules cannot be applied. Also, trauma to the distal forefoot (metatarsal heads and toes) is not directly addressed by the Ottawa rules. In general, if a fracture of a toe is suspected, radiographs can document or rule out a fracture [11,12].

**CT Foot**

In this clinical scenario and in absence of exclusionary criteria for the Ottawa rules, CT is not routinely used as the first imaging study for the evaluation of acute trauma to the foot.

**MRI Foot**

MRI is not routinely used as the first imaging study for the evaluation of acute trauma to the foot.

**US Foot**

A preliminary ultrasound (US) study has had less successful results compared with radiographic evaluation, with 90.9% sensitivity and specificity for detecting fracture [13]. A recent consensus paper from the European Society of Musculoskeletal Radiology [14] assigned low grading scores for US assessment of talus and bony avulsions.

**Variant 2: Adult or child older than 5 years of age. Acute trauma to the foot. Ottawa rules are positive. Initial imaging.**

**Radiography Foot**

Radiographs are indicated by positive Ottawa rules with 99% sensitivity in determining the presence of a foot fracture [1,9,10]. Radiographs are the mainstay of initial imaging in the setting of acute foot trauma. Initial imaging typically consists of a 3-view study with the possibility of additional views as indicated by the clinical setting [8]. Additional views, such as axial calcaneal view, can be useful in patients with suspected calcaneal fracture [15] because addition of this view increases specificity in diagnosing calcaneal fractures and sensitivity in distinguishing intra-articular calcaneal fractures.

**Lisfranc Injury**

When there is a fairly high clinical suspicion of an acute Lisfranc injury, the foot should be imaged. In addition to a typical 3-view radiographic study of the foot (anteroposterior [AP], oblique, and lateral), an AP view with 20° craniocaudal angulation can be added [16,17]. Although patients with Lisfranc sprains may incur ligamentous damage without diastasis [18], radiography should be the initial imaging modality in the setting of a suspected Lisfranc injury.

**Radiography Foot with Weightbearing**

If there are clinical signs of a Lisfranc injury, obtaining weightbearing radiographs is recommended when possible because nonweightbearing radiographs are not reliable for detection of subtle injuries. Weightbearing views have been shown to increase the abnormal alignment at the Lisfranc joint, thus making it easier to identify a Lisfranc injury [16,19]. The inclusion of both feet on AP radiographs can help in the detection of subtle malalignment when compared with the uninjured side [20].

**CT Foot**

CT is commonly used in evaluating the true extent of osseous injury in complex fractures and at times is used as the initial imaging study in polytrauma patients and in complex regions such as the midfoot [21,22]. CT is not routinely used as the first imaging study for the evaluation of acute trauma to the foot with positive Ottawa rules when exclusionary criteria do not apply.

**MRI Foot**

MRI is not routinely used as the first imaging study for the evaluation of acute trauma to the foot with positive Ottawa rules.
US Foot
A preliminary US study had less successful results compared with radiographic evaluation, with 90.9% sensitivity and specificity for detecting fracture [13]. In the presence of localized tenderness, one study reported US sensitivity and specificity of 100% and 96% for fifth metatarsal fractures and 40% and 93% for navicular fractures, respectively [23]. A recent consensus paper from European Society of Musculoskeletal Radiology [14] assigned low grading scores for US assessment of talus and bony avulsions.

Variant 3: Adult or child older than 5 years of age. Acute trauma to the foot. Ottawa rules cannot be evaluated due to exclusionary criteria. Initial imaging.
Multiple conditions or scenarios preclude the use of the Ottawa rules for determining if imaging is necessary [5,6]. It has been reported that the Ottawa rules for the foot should not be used or should be used with great caution in the following clinical situations: penetrating trauma, pregnancy, any skin wound, transferred with radiographs already taken, >10 days after trauma, a return visit for continued traumatic foot pain, in the setting of polytrauma, altered sensorium, neurologic abnormality affecting the foot, or underlying bone disease [7].

Radiography Foot
If a foot fracture is suspected in a neurologically compromised patient, including patients with diabetic neuropathy, the foot should be radiographed. The Ottawa rules should not be applied in this clinical setting because pain perception may be diminished, no point tenderness will be elicited with palpation, and the patient may be able to ambulate even if a fracture is present [5]. Polytrauma and penetrating trauma also constitute exceptions to the implementations of the Ottawa rules.

Both radiographs and US are useful imaging tools to exclude a foreign body in the setting of penetrating trauma to the foot [24]. The best initial imaging study for a foreign body in the foot depends on whether or not the suspected foreign body is radiopaque (eg, gravel, both leaded and nonleaded glass, or metal). Radiographic evaluation for a radiopaque foreign body has approximately 98% sensitivity [25]. If an unembedded fragment of the foreign body is available, then imaging it alongside the foot might provide more information as to the morphology and density of the foreign body.

CT Foot
CT is commonly used in evaluating the true extent of osseous injury in complex fractures and at times is used as the initial imaging study in polytrauma patients and in complex regions such as the midfoot [21,22]. In the polytrauma patient, approximately 25% of midfoot fractures identified on CT are overlooked on radiographs [21]. Therefore, CT is essential for appropriate treatment planning and determining the true extent of osseous injuries in the polytrauma patient and can be used as primary imaging technique in high-energy polytrauma patients.

Initial clinical experience suggests that cone-beam CT of the foot or ankle of pediatric patients is a viable lower-dose alternative to multidetector CT [26].

MRI Foot
MRI is not routinely used as the first imaging study for the evaluation of acute trauma to the foot in the setting of peripheral neuropathy, penetrating trauma, or polytrauma.

US Foot
US is not routinely used as the first imaging study for the evaluation of acute trauma to the foot in the setting of peripheral neuropathy or polytrauma. Both radiographs and US are useful imaging tools to exclude a foreign body in the setting of penetrating trauma to the foot [24]. US is the imaging modality of choice if the foreign body is not radiopaque (eg, wood or plastic), with a reported 90% sensitivity for visualizing wooden foreign bodies in some clinical and experimental studies [27,28]. US can identify a foreign body and also help localize it and determine if it involves a tendon or a muscle and to evaluate for an abscess.

Variant 4: Adult or child older than 5 years of age. Acute trauma to the foot. Ottawa rules can be evaluated without exclusionary criteria. Ottawa rules are negative. Suspected pathology in an anatomic area not addressed by Ottawa rules (not involving the midfoot; eg, metatarsal-phalangeal joint, metatarsal, toe, tendon, etc). Initial imaging.
In clinical situations when Ottawa rules are applicable and negative, imaging may still be desired to evaluate for injuries not assessed by the Ottawa rules. For example, clinical scenarios of acute foot trauma not directly addressed by the Ottawa rules include trauma to the metatarsal heads and toes and acute tendon injury.
Radiography Foot

Metatarsal-Phalangeal Joint Injury

The best initial imaging study for evaluating hallux plantar plate disruption after metatarsal-phalangeal (MTP) joint injury is weightbearing AP, lateral, and sesamoid axial views, with addition of comparison radiographs of the contralateral foot [29]. Radiographs may also indirectly evaluate lesser metatarsophalangeal plantar plate injury [30]. The combination of a positive drawer test coupled with transverse deviation of the third MTP joint on radiographs can be used to diagnose high-grade plantar plate tear of the second MTP joint [31].

A forced dorsiflexion lateral view of the hallux MTP joint is recommended if there is clinical suspicion of plantar plate injury of the first MTP joint [29].

Radiography Foot with Weightbearing

The best initial imaging study for evaluating hallux plantar plate disruption after MTP joint injury is weightbearing AP, lateral, and sesamoid axial views with addition of comparison radiographs of the contralateral foot [29,32].

CT Foot

Studies report moderate to poor sensitivity (25%–33%) of radiographs in detection of midfoot fractures [21] in Level 1 trauma patients. A study of 49 patients with acute hyperflexion injuries to the foot concluded that conventional radiographs including weightbearing images are not sufficient for routine diagnostic workup and CT should serve as the primary imaging technique for such patients [33].

MRI Foot

MRI is the most sensitive modality for the detection of occult fracture and acute bone stress changes [34,35]. MRI is not routinely used as the first imaging study for the evaluation of acute trauma to the foot in setting of suspected MTP joint injury or occult fracture. Both MRI and US are used in evaluating soft-tissue injuries of the foot in the setting of acute trauma, especially when radiographs are noncontributory. Both modalities have a similar sensitivity for acute soft-tissue trauma about the ankle and foot such as ligamentous and tendinous disruption [36-38].

US Foot

US is not routinely used as the first imaging study for the evaluation of acute trauma to the foot in the setting of suspected MTP joint injury or occult fracture. US has been shown to be sensitive for the diagnosis of acute tendon rupture or tendon dislocation in the foot [36,39,40].

Fluoroscopy Foot

In addition to routine radiographs, fluoroscopy has been suggested in assessment of a hallux MTP joint injury with direct fluoroscopic evaluation of sesamoid tracking distally with great toe extension at the MTP joint on forced dorsiflexion lateral view or fluoroscopy [29].

Variant 5: Adult or child older than 5 years of age. Acute trauma to the foot. Suspect Lisfranc injury, tendon injury, or occult fracture or dislocation. Radiographs are normal or equivocal. Next imaging study.

CT Foot

Lisfranc Injury

CT has been advocated as the primary imaging technique in acute hyperflexion injury and high-energy polytrauma (especially if the patient is not able to bear weight) [33,38,41-45]. CT is useful in demonstrating the multiple metatarsal and cuneiform fractures that can be associated with a ligamentous Lisfranc injury [21,22,33]. CT is typically used for preoperative planning for fracture treatment and evaluation. In the patient with a suspected Lisfranc injury and normal radiographs, the literature supports further advanced imaging by MRI and CT [21,33,43,46].

Acute Tendinous Injury

CT imaging has been shown to be an effective way of documenting various tendon entrapment and dislocations, in particularly peroneal dislocations and peroneal retinacular injuries, which are associated with comminuted calcaneal fractures [47-50].

MRI Foot

MRI can show osseous injuries that are not visible radiographically including fractures and high-grade contusions associated with prolonged recovery times in elite athletes [51]. MRI can demonstrate ligamentous and osseous
injuries in midtarsal (Chopart) sprains, which frequently accompany acute ankle injuries [52,53]. If radiographs are negative, MRI can be obtained in select patients with forefoot pain because of its increased sensitivity for the early detection of metatarsal head subchondral fracture [54].

Lisfranc Injury
MRI has been advocated as a sensitive diagnostic test in evaluation of Lisfranc ligamentous complex (especially if the patient is not able to bear weight), and 3-D volumetric acquisitions have proven superiority over orthogonal proton density fat-suppressed imaging [33,38,41-45]. There is a high correlation between MRI and intraoperative findings for an unstable Lisfranc injury [44]. In the patient with a suspected Lisfranc injury and normal radiographs, the literature supports further advanced imaging by MRI and CT [21,33,43,46].

Turf Toe and Plantar Plate Injuries
MRI is the preferred imaging method for evaluating suspected “turf toe” and lesser metatarsal plantar plate injury by directly evaluating the soft-tissue structures of the capsuloligamentous complex as well as assessing chondral and osteochondral lesions [29,55,56].

Acute Tendinous Rupture
MRI tends to be used as a screening tool when one is not certain of the specific tendon injury or if concomitant osseous injury is suspected. Both MRI and US have been shown to be sensitive for the diagnosis of acute tendon rupture or dislocation in the foot [39]. In a surgically confirmed study, MRI was shown to have 83% sensitivity for diagnosing tendon and ligament traumatic injuries about the foot and ankle [37].

US Foot
The importance of focused US examinations is emphasized in the literature [57,58]. Protocol-based US evaluation identified 97.4% of symptomatic abnormalities in the distal extremities (including the foot), with additional accuracy obtained with focused examination [57].

Lisfranc Injury
Although the literature evidence is limited, US may hold promise as an alternative method to accurately evaluate for a significant Lisfranc injury providing direct and indirect assessment of the Lisfranc ligamentous complex as well as dynamic evaluation with weightbearing as demonstrated in a series of 10 patients [59]. Dorsal component of Lisfranc ligament is amenable to direct US evaluation [59,60], although this structure may not be critical for stability for the Lisfranc joint [20,32]. The physiologic deformation of the dorsal Lisfranc ligament resulting from functional loading emphasized the need for normative US data as well as proper positioning when bilateral evaluation is performed [61,62].

Turf Toe and Plantar Plate Injuries
US in the sagittal plane best visualizes the plantar plate between the flexor tendon and hyaline cartilage of the metatarsal head [63]. US has shown a 96% sensitivity compared with 87% sensitivity for MRI for the detection of lesser toe plantar plate tears; however, both modalities have poor specificity [64].

Acute Tendinous Rupture
Both MRI and US have been shown to be sensitive for the diagnosis of acute tendon rupture or dislocation in the foot [39]. US has also been reported to have a high sensitivity for peroneal tendon tears [65].

Variant 6: Adult or child older than 5 years of age. Acute trauma to the foot. Suspect penetrating trauma with a foreign body. Radiographs of the foot are negative. Next imaging study.

CT Foot
An experimental study for detection of a variety of foreign bodies (eg, fresh wood, dry wood, glass, porcelain, and plastic fragments) reported 63% sensitivity and 98% specificity for CT for detecting a foreign body [66]. CT was superior to MRI in identifying water-rich fresh wood.

MRI Foot
An experimental study reported 58% sensitivity and 100% specificity for MRI for detecting a foreign body [66]. In a clinical study including 8 patients with wooden foreign bodies, MRI showed the surrounding inflammatory response in all patients [28].

US Foot
Both radiographs and US are useful imaging tools to exclude a foreign body in the setting of penetrating trauma to the foot [24]. US is the imaging modality of choice if the foreign body is not radiopaque (eg, wood or plastic),
with a reported 90% sensitivity for visualizing wooden foreign bodies in some clinical and experimental studies [27,28]. US can be used effectively to locate wooden foreign bodies as small as 2.5 mm in length [27]. However, some experimental studies utilizing soft-tissue phantom models report lower overall sensitivity (<50%) for US for detection of foreign bodies [25]. US can identify a foreign body and can also help localize it and determine if it involves a tendon or a muscle and to evaluate for an abscess.

**Summary of Recommendations**

- **Variant 1:** Imaging is not recommended for the initial imaging of an adult or child older than 5 years of age with acute trauma to the foot when Ottawa rules can be evaluated without exclusionary criteria and are negative and there are no suspected abnormalities in regions not evaluated by the Ottawa rules.

- **Variant 2:** Radiographs of the foot, or when a patient is able to tolerate, radiographs with weightbearing of the foot are usually appropriate for the initial imaging of an adult or child older than 5 years of age with acute trauma to the foot when Ottawa rules can be evaluated without exclusionary criteria and are positive. These procedures are complementary (ie, more than one procedure is ordered as a set or simultaneously in which each procedure provides unique clinical information to effectively manage the patient’s care).

- **Variant 3:** Radiographs of the foot are usually appropriate for the initial imaging of an adult or child older than 5 years of age with acute trauma to the foot when Ottawa rules cannot be ruled out due to exclusionary criteria. CT of the foot without IV contrast may be appropriate initial imaging study in high energy polytrauma patients.

- **Variant 4:** Radiographs of the foot and radiographs with weightbearing of the foot are usually appropriate for the initial imaging of an adult or child older than 5 years of age with acute trauma to the foot when Ottawa rules can be evaluated without exclusionary criteria and are negative or suspected pathology in an anatomic area not addressed by the Ottawa rules. These procedures are complementary (ie, more than one procedure is ordered as a set or simultaneously in which each procedure provides unique clinical information to effectively manage the patient’s care). The panel did not agree on recommending CT of the foot without IV contrast for the initial imaging of patients in this clinical scenario. There is insufficient medical literature to conclude whether or not these patients would benefit from CT of the foot without IV contrast. CT of the foot without IV contrast in this patient population is controversial but can be appropriate.

- **Variant 5:** CT of the foot without IV contrast or MRI of the foot without IV contrast is usually appropriate for the next imaging study when radiographs are normal or equivocal of an adult or child older than 5 years of age with acute trauma to the foot and suspected Lisfranc injury, tendon injury, or occult fracture or dislocation. These procedures are equivalent alternatives (ie, only one procedure will be ordered to provide the clinical information to effectively manage the patient’s care). US of the foot can be the appropriate next imaging study when radiographs are normal or equivocal of an adult or child older than 5 years of age with acute trauma to the foot as a focused examination in selected clinical scenarios, such as suspected plantar plate injuries or acute tendinous rupture.

- **Variant 6:** US of the foot is usually appropriate for the next imaging study when radiographs are negative for an adult or child older than 5 years of age with acute trauma to the foot and suspected penetrating trauma with a foreign body.

**Supporting Documents**

The evidence table, literature search, and appendix for this topic are available at [https://acsearch.acr.org/list](https://acsearch.acr.org/list). The appendix includes the strength of evidence assessment and the final rating round tabulations for each recommendation.

For additional information on the Appropriateness Criteria methodology and other supporting documents go to [www.acr.org/ac](http://www.acr.org/ac).
### Appropriateness Category Names and Definitions

<table>
<thead>
<tr>
<th>Appropriateness Category Name</th>
<th>Appropriateness Rating</th>
<th>Appropriateness Category Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usually Appropriate</td>
<td>7, 8, or 9</td>
<td>The imaging procedure or treatment is indicated in the specified clinical scenarios at a favorable risk-benefit ratio for patients.</td>
</tr>
<tr>
<td>May Be Appropriate</td>
<td>4, 5, or 6</td>
<td>The imaging procedure or treatment may be indicated in the specified clinical scenarios as an alternative to imaging procedures or treatments with a more favorable risk-benefit ratio, or the risk-benefit ratio for patients is equivocal.</td>
</tr>
<tr>
<td>May Be Appropriate (Disagreement)</td>
<td>5</td>
<td>The individual ratings are too dispersed from the panel median. The different label provides transparency regarding the panel’s recommendation. “May be appropriate” is the rating category and a rating of 5 is assigned.</td>
</tr>
<tr>
<td>Usually Not Appropriate</td>
<td>1, 2, or 3</td>
<td>The imaging procedure or treatment is unlikely to be indicated in the specified clinical scenarios, or the risk-benefit ratio for patients is likely to be unfavorable.</td>
</tr>
</tbody>
</table>

### Relative Radiation Level Information

Potential adverse health effects associated with radiation exposure are an important factor to consider when selecting the appropriate imaging procedure. Because there is a wide range of radiation exposures associated with different diagnostic procedures, a relative radiation level (RRL) indication has been included for each imaging examination. The RRLs are based on effective dose, which is a radiation dose quantity that is used to estimate population total radiation risk associated with an imaging procedure. Patients in the pediatric age group are at inherently higher risk from exposure, because of both organ sensitivity and longer life expectancy (relevant to the long latency that appears to accompany radiation exposure). For these reasons, the RRL dose estimate ranges for pediatric examinations are lower as compared with those specified for adults (see Table below). Additional information regarding radiation dose assessment for imaging examinations can be found in the ACR Appropriateness Criteria® Radiation Dose Assessment Introduction document [67].

### Relative Radiation Level Designations

<table>
<thead>
<tr>
<th>Relative Radiation Level*</th>
<th>Adult Effective Dose Estimate Range</th>
<th>Pediatric Effective Dose Estimate Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>☀</td>
<td>0 mSv</td>
<td>0 mSv</td>
</tr>
<tr>
<td>☀ ☀</td>
<td>&lt;0.1 mSv</td>
<td>&lt;0.03 mSv</td>
</tr>
<tr>
<td>☀ ☀ ☀</td>
<td>0.1-1 mSv</td>
<td>0.03-0.3 mSv</td>
</tr>
<tr>
<td>☀ ☀ ☀ ☀</td>
<td>1-10 mSv</td>
<td>0.3-3 mSv</td>
</tr>
<tr>
<td>☀ ☀ ☀ ☀ ☀</td>
<td>10-30 mSv</td>
<td>3-10 mSv</td>
</tr>
<tr>
<td>☀ ☀ ☀ ☀ ☀ ☀</td>
<td>30-100 mSv</td>
<td>10-30 mSv</td>
</tr>
</tbody>
</table>

*RRL assignments for some of the examinations cannot be made, because the actual patient doses in these procedures vary as a function of a number of factors (eg, region of the body exposed to ionizing radiation, the imaging guidance that is used). The RRLs for these examinations are designated as “Varies.”

### References


The ACR Committee on Appropriateness Criteria and its expert panels have developed criteria for determining appropriate imaging examinations for diagnosis and treatment of specified medical condition(s). These criteria are intended to guide radiologists, radiation oncologists and referring physicians in making decisions regarding radiologic imaging and treatment. Generally, the complexity and severity of a patient’s clinical condition should dictate the selection of appropriate imaging procedures or treatments. Only those examinations generally used for evaluation of the patient’s condition are ranked. Other imaging studies necessary to evaluate other co-existent diseases or other medical consequences of this condition are not considered in this document. The availability of equipment or personnel may influence the selection of appropriate imaging procedures or treatments. Imaging techniques classified as investigational by the FDA have not been considered in developing these criteria; however, study of new equipment and applications should be encouraged. The ultimate decision regarding the appropriateness of any specific radiologic examination or treatment must be made by the referring physician and radiologist in light of all the circumstances presented in an individual examination.